满分5 > 高中数学试题 >

已知平面直角坐标系xoy中O是坐标原点,,圆C是△OAB的外接圆,过点(2,6)...

已知平面直角坐标系xoy中O是坐标原点,manfen5.com 满分网,圆C是△OAB的外接圆,过点(2,6)的直线l被圆所截得的弦长为manfen5.com 满分网
(1)求圆C的方程及直线l的方程;
(2)设圆N的方程(x-4-7cosθ)2+(y-7sinθ)2=1,(θ∈R),过圆N上任意一点P作圆C的两条切线PE,PF,切点为E,F,求manfen5.com 满分网的最大值.
(1)直角三角形斜边的中点就是该直角三角形外接圆的圆心,半径r、弦长l、弦心距d三者满足:r2=d2+. (2)结合图象,利用2个向量的数量积的定义,用∠ECF的一半α表示则的结果,由圆的几何性质|PC|≥|NC|-1,可得cosα的最大值,进而得的最大值. 【解析】 (1)因为,所以△OAB为以OB为斜边的直角三角形, 所以圆C:(x-4)2+y2=16 ①斜率不存在时,l:x=2被圆截得弦长为,所以l:x=2适合 ②斜率存在时,设l:y-6=k(x-2)即kx-y+6-2k=0 因为被圆截得弦长为,所以圆心到直线距离为2,所以 ∴ ∴ 综上,l:x=2或4x+3y-26=0 (2)【解析】 设∠ECF=2a, 则. 在Rt△PCE中,,由圆的几何性质得|PC|≥|NC|-1=7-1=6, 所以, 由此可得,则的最大值为.
复制答案
考点分析:
相关试题推荐
如图,吊车的车身高为m米(包括车轮的高度),吊臂长n米,现要把一个直径为6米,高为3米的圆柱形屋顶水平地吊到屋基上安装,在安装过程中屋顶不能倾斜(注:在吊臂的旋转过程中可以靠吊起屋顶的缆绳的伸缩使得屋顶保持水平状态).
(1)设吊臂与水平面的倾斜角为α,屋顶底部与地面间的距离最大为h米,此时如图所示,屋顶上部与吊臂有公共点,试将h表示为α函数,并写出定义域;
(2)若某吊车的车身高为2.5米,吊臂长24米,使用该吊车将屋顶吊到14米的屋基上,能否吊装成功?

manfen5.com 满分网 查看答案
四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,manfen5.com 满分网,AB=AC.
(I)取CD的中点为F,AE的中点为G,证明:FG∥面ABC;
(II)证明:AD⊥CE.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网=(1,sinα),manfen5.com 满分网=(2,sin(α+2β)),manfen5.com 满分网manfen5.com 满分网
(1)若sinβ=manfen5.com 满分网,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.
查看答案
下列四种说法:
①命题“∃x∈R,使得x2+1>3x”的否定是“∀x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为manfen5.com 满分网
④过点(manfen5.com 满分网,1)且与函数y=manfen5.com 满分网图象相切的直线方程是4x+y-3=0.
其中所有正确说法的序号是     查看答案
定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,如:[1.5]=1,[-1.3]=-2,当x∈[0,n)(n∈N*)时,设函数f(x)的值域为A,记集合A中的元素个数为an,则式子[manfen5.com 满分网]的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.