已知各项均为实数的数列{a
n}是公差为d的等差数列,它的前n项和为S
n,且满足S
4=2S
2+8.
(1)求公差d的值;
(2)若数列{a
n}的首项的平方与其余各项之和不超过10,则这样的数列至多有多少项;
(3)请直接写出满足(2)的项数最多时的一个数列(不需要给出演算步骤).
考点分析:
相关试题推荐
已知平面直角坐标系xoy中O是坐标原点,
,圆C是△OAB的外接圆,过点(2,6)的直线l被圆所截得的弦长为
.
(1)求圆C的方程及直线l的方程;
(2)设圆N的方程(x-4-7cosθ)
2+(y-7sinθ)
2=1,(θ∈R),过圆N上任意一点P作圆C的两条切线PE,PF,切点为E,F,求
的最大值.
查看答案
如图,吊车的车身高为m米(包括车轮的高度),吊臂长n米,现要把一个直径为6米,高为3米的圆柱形屋顶水平地吊到屋基上安装,在安装过程中屋顶不能倾斜(注:在吊臂的旋转过程中可以靠吊起屋顶的缆绳的伸缩使得屋顶保持水平状态).
(1)设吊臂与水平面的倾斜角为α,屋顶底部与地面间的距离最大为h米,此时如图所示,屋顶上部与吊臂有公共点,试将h表示为α函数,并写出定义域;
(2)若某吊车的车身高为2.5米,吊臂长24米,使用该吊车将屋顶吊到14米的屋基上,能否吊装成功?
查看答案
四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,
,AB=AC.
(I)取CD的中点为F,AE的中点为G,证明:FG∥面ABC;
(II)证明:AD⊥CE.
查看答案
已知
=(1,sinα),
=(2,sin(α+2β)),
∥
.
(1)若sinβ=
,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.
查看答案
下列四种说法:
①命题“∃x∈R,使得x
2+1>3x”的否定是“∀x∈R,都有x
2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x
2+bx+c=0有实根的概率为
;
④过点(
,1)且与函数y=
图象相切的直线方程是4x+y-3=0.
其中所有正确说法的序号是
.
查看答案