满分5 > 高中数学试题 >

已知a>0,函数f(x)=ax-bx2. (1)当b>0时,若对任意x∈R都有f...

已知a>0,函数f(x)=ax-bx2
(1)当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2manfen5.com 满分网
(2)当b>1时,证明:对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2manfen5.com 满分网
(3)当0<b≤1时,讨论:对任意x∈[0,1],|f(x)|≤1的充要条件.
(1)因为对任意x∈R都有f(x)≤1,所以把函数变为顶点形式,且a>0,b>0,有当x=时,f()≤1,化简即可得证;(2)①先证明必要性:讨论绝对值不等式|f(x)|≤1的解集为f(x)≤1或f(x)≥-1,分别得到a的范围,求出公共解集即可;②证明充分性;由b-1≤a得f(x)≥-1得到f(x)的取值范围,由a≤2.f(x)≤1,求出公共解集得到f(x)的范围即可. (3)先证必要性:f(x)≤1得到a-b≤1即a≤b+1;再证充分性:由a≤b+1得到f(x)≤1,得到|f(x)|≤1的充要条件. (1)证明:根据题设,对任意x∈R,都有f(x)≤1. 又f(x)=-b(x-)2+.∴f()=≤1, ∵a>0,b>0, ∴a≤2. (2)证明:必要性:对任意x∈[0,1],|f(x)|≤1⇒f(x)≥-1.据此可推出f(1)≥-1,即a-b≥-1,∴a≥b-1. 对任意x∈[0,1],|f(x)|≤1⇒f(x)≤1,因为b>1,可得0<<1,可推出f()≤1,即a•-1≤1,∴a≤2,∴b-1≤a≤2. 充分性:因为b>1,a≥b-1,对任意x∈[0,1],可以推出ax-bx2≥b(x-x2)-x≥-x≥-1,即ax-bx2≥-1,因为b>1,a≤2对任意x∈[0,1],可以推出:ax-bx2≤2x-bx2-b(x-)2+1≤1,即ax-bx2≤1,∴-1≤f(x)≤1. 综上,当b>1时,对任意x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2. (3)【解析】 因为a>0,0<b≤1时,对任意x∈[0,1]有f(x)=ax-bx2≥-b≥-1,即f(x)≥-1; f(x)≤1⇒f(1)≤1⇒a-b≤1,即a≤b+1, 又a≤b+1⇒f(x)≤(b+1)x-bx2≤1,即f(x)≤1. 所以,当a>0,0<b≤1时,对任意x∈[0,1],|f(x)|≤1的充要条件是a≤b+1.
复制答案
考点分析:
相关试题推荐
已知各项均为实数的数列{an}是公差为d的等差数列,它的前n项和为Sn,且满足S4=2S2+8.
(1)求公差d的值;
(2)若数列{an}的首项的平方与其余各项之和不超过10,则这样的数列至多有多少项;
(3)请直接写出满足(2)的项数最多时的一个数列(不需要给出演算步骤).
查看答案
已知平面直角坐标系xoy中O是坐标原点,manfen5.com 满分网,圆C是△OAB的外接圆,过点(2,6)的直线l被圆所截得的弦长为manfen5.com 满分网
(1)求圆C的方程及直线l的方程;
(2)设圆N的方程(x-4-7cosθ)2+(y-7sinθ)2=1,(θ∈R),过圆N上任意一点P作圆C的两条切线PE,PF,切点为E,F,求manfen5.com 满分网的最大值.
查看答案
如图,吊车的车身高为m米(包括车轮的高度),吊臂长n米,现要把一个直径为6米,高为3米的圆柱形屋顶水平地吊到屋基上安装,在安装过程中屋顶不能倾斜(注:在吊臂的旋转过程中可以靠吊起屋顶的缆绳的伸缩使得屋顶保持水平状态).
(1)设吊臂与水平面的倾斜角为α,屋顶底部与地面间的距离最大为h米,此时如图所示,屋顶上部与吊臂有公共点,试将h表示为α函数,并写出定义域;
(2)若某吊车的车身高为2.5米,吊臂长24米,使用该吊车将屋顶吊到14米的屋基上,能否吊装成功?

manfen5.com 满分网 查看答案
四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,manfen5.com 满分网,AB=AC.
(I)取CD的中点为F,AE的中点为G,证明:FG∥面ABC;
(II)证明:AD⊥CE.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网=(1,sinα),manfen5.com 满分网=(2,sin(α+2β)),manfen5.com 满分网manfen5.com 满分网
(1)若sinβ=manfen5.com 满分网,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.