①举一例子即可说明本命题是真命题;
②举一反例即可说明本命题是假命题;
③假设直线l过两个不同的整点,设直线l为y=kx,把两整点的坐标代入直线l的方程,两式相减得到两整点的横纵坐标之差的那个点也为整点且在直线l上,利用同样的方法,得到直线l经过无穷多个整点,得到本命题为真命题;
④根据③为真命题,把直线l的解析式y=kx上下平移即不能得到y=kx+b,所以本命题为假命题;
⑤举一例子即可得到本命题为真命题.
【解析】
①令y=x+,既不与坐标轴平行又不经过任何整点,所以本命题正确;
②若k=,b=,则直线y=x+经过(-1,0),所以本命题错误;
设y=kx为过原点的直线,若此直线l过不同的整点(x1,y1)和(x2,y2),
把两点代入直线l方程得:y1=kx1,y2=kx2,
两式相减得:y1-y2=k(x1-x2),
则(x1-x2,y1-y2)也在直线y=kx上且为整点,
通过这种方法得到直线l经过无穷多个整点,
又通过上下平移得到y=kx+b不一定成立.则③正确,④不正确;
⑤令直线y=x恰经过整点(0,0),所以本命题正确.
综上,命题正确的序号有:①③⑤.
故答案为:①③⑤