满分5 > 高中数学试题 >

已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0...

已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分.
求:
(1)直线l的方程;
(2)以O为圆心且被l截得的弦长为manfen5.com 满分网的圆的方程.
(1)依题意可设A(m,n)、B(2-m,2-n),分别代入直线l1 和l2的方程,求出m=-1,n=2,用两点式求直线的方程. (2)先求出圆心(0,0)到直线l的距离d,设圆的半径为R,则由,求得R的值,即可求出圆的方程. 【解析】 (1)依题意可设A(m,n)、B(2-m,2-n),则,即,解得m=-1,n=2. 即A(-1,2),又l过点P(1,1),用两点式求得AB方程为=,即:x+2y-3=0. (2)圆心(0,0)到直线l的距离d==,设圆的半径为R,则由 , 求得R2=5,故所求圆的方程为x2+y2=5.
复制答案
考点分析:
相关试题推荐
已知双曲线C的离心率为manfen5.com 满分网,且过点(4,-manfen5.com 满分网
(1)求双曲线C的标准方程;
(2)若点M(3,m)在双曲线C上,求证:MF1⊥MF2
(3)求△F1MF2的面积.
查看答案
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA,垂足为N,求点N的坐标.
查看答案
已知圆x2+y2-4ax+2ay+20(a-1)=0.
(1)求证对任意实数a,该圆恒过一定点;
(2)若该圆与圆x2+y2=4相切,求a的值.
查看答案
求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.
查看答案
在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.
(1)求点C的坐标;
(2)求直线MN的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.