满分5 > 高中数学试题 >

已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3).
(Ⅰ)求椭圆C和直线l的方程;
(Ⅱ)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线x2-2mx+y2+4y+m2-4=0与D有公共点,试求实数m的最小值.
(Ⅰ)由离心率求得a和b的关系,把点B代入椭圆的方程,联立方程求得a和b,则椭圆的方程可得. (Ⅱ)把圆的方程整理成标准方程求得圆心和半径,进而利用图象可知只须考虑m<0的情形.设出圆与直线的切点,利用点到直线的距离求得m,进而可求得过点G与直线l垂直的直线的方程,把两直线方程联立求得T,因为区域D内的点的横坐标的最小值与最大值分别为-1,2,所以切点T∉D,由图可知当⊙G过点B时,m取得最小值,利用两点间的距离公式求得m的最小值. 【解析】 (Ⅰ)由离心率,得,即a2=3b2.① 又点B(-1,-3)在椭圆上,即.② 解①②得a2=12,b2=4, 故所求椭圆方程为. 由A(2,0),B(-1,-3)得直线l的方程为y=x-2. (Ⅱ)曲线x2-2mx+y2+4y+m2-4=0, 即圆(x-m)2+(y+2)2=8,其圆心坐标为G(m,-2),半径, 表示圆心在直线y=-2上,半径为的动圆. 由于要求实数m的最小值,由图可知,只须考虑m<0的情形. 设⊙G与直线l相切于点T,则由,得m=±4, 当m=-4时,过点G(-4,-2)与直线l垂直的直线l'的方程为x+y+6=0, 解方程组,得T(-2,-4). 因为区域D内的点的横坐标的最小值与最大值分别为-1,2, 所以切点T∉D,由图可知当⊙G过点B时,m取得最小值, 即(-1-m)2+(-3+2)2=8,解得.
复制答案
考点分析:
相关试题推荐
已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x3-24manfen5.com 满分网
y-2manfen5.com 满分网-4manfen5.com 满分网
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足manfen5.com 满分网?若存在,求出直线l的方程;若不存在,说明理由.
查看答案
已知圆C1:(x-4)2+y2=1,圆C2:x2+(y-2)2=1,动点P到圆C1,C2上点的距离的最小值相等.
(1)求点P的轨迹方程;
(2)点P的轨迹上是否存在点Q,使得点Q到点A(manfen5.com 满分网,0)的距离减去点Q到点B(manfen5.com 满分网)的距离的差为4,如果存在求出Q点坐标,如果不存在说明理由.
查看答案
已知点A的坐标为(-4,4),直线l的方程为3x+y-2=0,求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线l关于点A的对称直线l′的方程.
查看答案
已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分.
求:
(1)直线l的方程;
(2)以O为圆心且被l截得的弦长为manfen5.com 满分网的圆的方程.
查看答案
已知双曲线C的离心率为manfen5.com 满分网,且过点(4,-manfen5.com 满分网
(1)求双曲线C的标准方程;
(2)若点M(3,m)在双曲线C上,求证:MF1⊥MF2
(3)求△F1MF2的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.