满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭...

manfen5.com 满分网已知椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于manfen5.com 满分网
(1)求椭圆的离心率e的取值范围;
(2)设椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A,B两点,若OA⊥OB,求直线l被圆F2截得的弦长的最大值.
(1)可设且显得的长,当且仅当|PF2|取得最小值时|PT|取得最小值,进而求得|PF2|的最小值,进而判断出,求得e的范围. (2)依题意求得Q点坐标,设出直线方程,与椭圆方程联立消去y,设A(x1,y1),B(x2,y2),进而表示出x1+x2和x1x2,代入直线方程求得y1y2的表达式和x1•x2+y1•y2,进而根据OA⊥OB,判断出=0求得k和a的关系,表示出圆心到直线度的距离,根据(1)中e的范围确定c的范围,进而确定S的范围,则其最大值可求. 【解析】 (1)依题意设切线长, ∴当且仅当|PF2|取得最小值时|PT|取得最小值,而|PF2|min=a-c, ∴,∴,从而解得, 故离心率e的取值范围是; (2)依题意Q点的坐标为(1,0),则直线的方程为y=k(x-1), 联立方程组,得(a2k2+1)x2-2a2k2x+a2k2-a2=0, 设A(x1,y1),B(x2,y2),则有,, 代入直线方程得y1y2=k2[x1x2-(x1+x2)+1]=,, 又OA⊥OB,∴,∴,∴,∴k=a,直线的方程为ax-y-a=0, 圆心F2(c,0)到直线l的距离, 由图象可知, ∴,∴, ∴, 所以.
复制答案
考点分析:
相关试题推荐
已知某几何体的直观图和三视图如图所示,其正视图为直角梯形,侧视图为等腰直角三角形,俯视图为矩形.
(Ⅰ)证明:BN⊥平面B1C1N;
(II)求二面角C-NB1-C1的余弦值;
(III)设M为线段AB的中点,在线段BC上是否存在一点P,使得MP∥平面CNB1?若存在,指出点P的位置;若不存在,请说明理由.
manfen5.com 满分网

manfen5.com 满分网 查看答案
2010年5月1日,上海世博会举行,在安全保障方面,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A、B、C、D)参加挑选,且每人能通过体能、射击、反应的概率分别为manfen5.com 满分网.这三项测试能否通过相互之间没有影响.
(1)求A能够入选的概率;
(2)规定:按入选人数得训练经费(每入选1人,则相应的训练基地得到3000元的训练经费),求该基地得到训练经费的分布列与数学期望.
查看答案
已知在△ABC中,三条边a、b、c所对的角分别为A、B、C,向量manfen5.com 满分网=(sinA,cosA),manfen5.com 满分网=(cosB,sinB),且满足manfen5.com 满分网
(1)求角C的大小;
(2)若sinA、sinC、sinB成等差数列,且manfen5.com 满分网=18,求c的值.
查看答案
下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交与点N(n,0),则m的象就是n,记作f(m)=n
manfen5.com 满分网
下列说法中正确的命题的序号是     (填出所有正确命题的序号).
manfen5.com 满分网
②f(x)是奇函数;
③f(x)在定义域上单调递增;
④f(x)的图象关于点(manfen5.com 满分网,0)对称 查看答案
数列{an}满足:manfen5.com 满分网,记manfen5.com 满分网,若manfen5.com 满分网对任意的n(n∈N+)恒成立,则正整数t的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.