利用正方形的面积求出椭圆的焦距、长轴长;利用椭圆的大定义求出P到两焦点的距离,代入PC•PD转化成二次函数最值,利用二次函数求出最值.
【解析】
设左右焦点为F1、F2,上顶点为A,正方形边长=2,
∴|AF1|=|AF2|=2,|F1F2|=,
c=,
则C、D是椭圆的左右焦点,C是F1,D是F2,
根据椭圆定义,|AF1|+|AF2|=2+2=4=2a,
a是长半轴长,
a=2,
|PF1|+|PF2|=2a=4,
|PF1|•|PF2|=|PF1|•(4-|PF1|),
设|PF1|=x,
|PC|•|PD|=x(4-x)=-x2+4x═-(x-2)2+4
当x=2时.其乘积最大值为4.
当P在短轴顶点时,最大.