满分5 > 高中数学试题 >

设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9. (1)求数...

设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.
(1)求数列{an}的通项公式及前n项和公式;
(2)设数列{bn}的通项公式为manfen5.com 满分网,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
(1)设出等差数列的公差为d,根据等差数列的性质及通项公式化简a5+a13=34,S3=9,即可求出首项和公差,分别写出通项公式及前n项和的公式即可; (2)把(1)求得的通项公式an代入得到数列{bn}的通项公式,因为b1,b2,bm成等差数列,所以2b2=b1+bm,利用求出的通项公式化简,解出m,因为m与t都为正整数,所以得到此时t和m的值即可. 【解析】 (1)设等差数列{an}的公差为d.由已知得 即解得. 故an=2n-1,Sn=n2 (2)由(1)知.要使b1,b2,bm成等差数列,必须2b2=b1+bm, 即,(8分). 移项得:=-=, 整理得, 因为m,t为正整数,所以t只能取2,3,5. 当t=2时,m=7;当t=3时,m=5;当t=5时,m=4. 故存在正整数t,使得b1,b2,bm成等差数列.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
查看答案
如图,过原点且倾斜角为α的直线交单位圆于点A(manfen5.com 满分网),C是单位圆与x轴正半轴的交点,B是单位圆上第二象限的点,且△AOB为正三角形.
(I)求sin2manfen5.com 满分网的值;
(II)求△BOC的面积.

manfen5.com 满分网 查看答案
设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x∈R,使得f(x)<0与g(x)<0同时成立,则实数a的取值范围是    查看答案
《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款135元,则他的当月工资、薪金的税后所得是    元.
全月应纳税所得额税率
不超过500元的部分5%
超过500元至2000元的部分10%
超过2000元至5000元的部分15%
查看答案
若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.