满分5 > 高中数学试题 >

如图,已知圆,经过椭圆(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)...

manfen5.com 满分网如图,已知圆manfen5.com 满分网,经过椭圆manfen5.com 满分网(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)倾斜角为manfen5.com 满分网的直线1交椭圆于C,D两点
(1)求椭圆的方程
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
(1)依据题意可求得F,B的坐标,求得c和b,进而求得a,则椭圆的方程可得. (2)设出直线l的方程,与椭圆方程联立消去,利用判别式大于0求得m的范围,设出C,D的坐标,利用韦达定理表示出x1+x2和 x1x2,进而利用直线方程求得y1y2,表示出和,进而求得•的表达式,利用F在圆E的内部判断出•<0求得m的范围,最后综合可求得md 范围. 【解析】 (1)过点F、B, ∴F(2,0),, 故椭圆的方程为 (2)直线l: 消y得2x2-2mx+(m2-6)=0 由△>0⇒, 又⇒ 设C(x1,y1)、D(x2,y2),则x1+x2=m,,,, ∴ ∵F在圆E的内部,∴, 又⇒.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(Ⅱ)当a=1时,求f(x)在manfen5.com 满分网上的最大值和最小值.
查看答案
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,manfen5.com 满分网(万元);当年产量不小于80千件时,manfen5.com 满分网(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,点F是棱PD的中点,点E在棱CD上移动.
(Ⅰ)当点E为CD的中点时,试判断直线EF与平面PAC的关系,并说明理由;
(Ⅱ)求证:PE⊥AF.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,函数manfen5.com 满分网
(I)求函数f(x)的单调递增区间;
(Ⅱ)当x∈[0,π]时,求函数f(x)的最大值.
查看答案
等比数列{an}中,已知a1=2,a4=16
(I)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.