满分5 > 高中数学试题 >

已知. (1)求函数f(x)的单调递增区间; (2)在△ABC中,角A、B、C的...

已知manfen5.com 满分网
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
(1)先用两角和公式和对函数解析式化简整理,进而根据正弦函数的性质求得函数f(x)的单调递增区间. (2)先利用正弦定理把题设中的等式转化成关于角的正弦和余弦的等式,进而根据两角和公式化简整理求得cosB,进而求得B,利用三角形的内角和求得A的范围,则f(A)的取值范围可得. 【解析】 (Ⅰ)由=. ∵,(k∈Z) ∴,(k∈Z) ∴f(x)的单调递增区间为(k∈Z). (Ⅱ)由(2a-c)cosB=bcosC, 得(2sinA-sinC)cosB=sinBcosC, ∴2sinAcosB-cosBsinC=sinBcosC, ∴2sinAcosB=sin(B+C), ∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0, ∴,. ∴,, 故函数f(A)的取值范围是.
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网,若[x]表示不大于x的最大整数,则函数manfen5.com 满分网的值域是    查看答案
设P为曲线C:y=x2-x+1上一点,曲线C在点P处的切线的斜率的范围是[-1,3],则点P纵坐标的取值范围是    查看答案
已知A、B、C三点在球心为O的球面上,AB=AC=2,∠BAC=90°,球心O到平面ABC的距离为manfen5.com 满分网,则球O的表面积为    查看答案
把a、a、b、c、d五个字母排成一行,两个字母a不相邻的排列数为    查看答案
已知抛物线y2=2px(p>0)的焦点F与椭圆manfen5.com 满分网的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.