登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知函数f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲线y=f(x)在...
已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x
2
-2x+2,若对任意x
1
∈(0,+∞),均存在x
2
∈[0,1],使得f(x
1
)<g(x
2
),求a的取值范围.
(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率; (Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间; (Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围. 【解析】 (Ⅰ)由已知,则f'(1)=2+1=3. 故曲线y=f(x)在x=1处切线的斜率为3; (Ⅱ). ①当a≥0时,由于x>0,故ax+1>0,f'(x)>0 所以,f(x)的单调递增区间为(0,+∞). ②当a<0时,由f'(x)=0,得. 在区间上,f'(x)>0,在区间上f'(x)<0, 所以,函数f(x)的单调递增区间为,单调递减区间为; (Ⅲ)由已知,转化为f(x)max<g(x)max, 因为g(x)=x2-2x+2=(x-1)2+1,x∈[0,1], 所以g(x)max=2…(9分) 由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意. 当a<0时,f(x)在(0,-)上单调递增,在(-,+∞)上单调递减, 故f(x)的极大值即为最大值,f(-)=-1+ln(-)=-1-ln(-a), 所以2>-1-ln(-a),解得a<-.
复制答案
考点分析:
相关试题推荐
设直线l:y=x+1与椭圆
相交于A、B两个不同的点,与x轴相交于点F.
(Ⅰ)证明:a
2
+b
2
>1;
(Ⅱ)若F是椭圆的一个焦点,且
,求椭圆的方程.
查看答案
如图,正三棱柱ABC-A
1
B
1
C
1
中,D是BC的中点,AA
1
=AB=1.
(I)求证:A
1
C∥平面AB
1
D;
(II)求二面角B-AB
1
-D的大小;
(III)求点c到平面AB
1
D的距离.
查看答案
某地区举行环保知识大赛,比赛分初赛和决赛两部分,初赛采用选用选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题直接进入决赛,答错3次者则被淘汰,已知选手甲连续两次答错的概率为
(已知甲回答每个问题的正确率相同,且相互之间没有影响)
(I)求甲选手回答一个问题的正确率;
(II)求选手甲进入决赛的概率;
(III)设选手甲在初赛中的答题的个数为ξ,试求ξ的分布列,并求出ξ的数学期望.
查看答案
数列{a
n
}的前n项和为S
n
,且a
1
=1,S
n+1
=2S
n
+n+1,n∈N.
(Ⅰ)求数列{a
n
}的通项公式;
(Ⅱ)
,设数列{b
n
}的前n项和为T
n
,n∈N
*
,试判断T
n
与2的关系,并说明理由.
查看答案
已知
.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.