(I) 由程序框图可直接得到a n+2=4 an+1-4an
(Ⅱ)将a n+2=4 an+1-4an移向变形得出an+1-2an =2(a n+1-2an),从而可证{an+1-2an}是等比数列;
(Ⅲ)由(Ⅱ)可求出an+1-2an=-2 n-1 两边同除以2n+1变形构造出=,从而可解决.
【解析】
(I) 由程序框图可知,数列{an}的一个递推关系式
a1=1,a2=1,a n+2=4 an+1-4an
(II)由an+1-2an =2(a n+1-2an),且a2-2a1=-1
∴数列{an+1-2an}是以-1为首项,2为公比的等比数列
(III) 由(II)有an+1-2an=-2 n-1
∴=,又=
∴l数列是以为首项,以为公差的等差数列
∴,
∴an=