满分5 > 高中数学试题 >

设F1,F2分别是椭圆C:的左右焦点, (1)设椭圆C上的点到F1,F2两点距离...

设F1,F2分别是椭圆C:manfen5.com 满分网的左右焦点,
(1)设椭圆C上的点manfen5.com 满分网到F1,F2两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段KF1的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPM,KPN试探究kPM•KPN的值是否与点P及直线L有关,并证明你的结论.
(1)根据椭圆C上的点到F1,F2两点距离之和等于4,可知2a=4,求得a.把点和a代入椭圆的标准方程,可求得b.进而可得椭圆的标准方程和焦点坐标. (2)设KF1的中点为B(x,y)则点K(2x+1,2y),把K的坐标代入椭圆的标准方程,可得到x和y的关系式即点B的轨迹方程 (3)设M(x,y),N(-x,-y),p(x,y) 把这些点代入椭圆的标准方程,得到后两式相减可得到的值,然后表示出kPM,KPN后相乘并将的值代入可得到结论. 【解析】 (1)由于点在椭圆上, 2a=4, 椭圆C的方程为 焦点坐标分别为(-1,0),(1,0) (2)设KF1的中点为B(x,y)则点K(2x+1,2y) 把K的坐标代入椭圆中得 线段KF1的中点B的轨迹方程为 (3)过原点的直线L与椭圆相交的两点M,N关于坐标原点对称 设M(x,y)N(-x,-y),p(x,y) M,N,P在椭圆上,应满足椭圆方程, 得 kPM•KPN==- kPM•KPN的值与点P及直线L无关
复制答案
考点分析:
相关试题推荐
北京奥运会纪念章特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x元(x∈N*).
(Ⅰ)写出该特许专营店一年内销售这种纪念章所获得的利润y(元)与每枚纪念章的销售价格x的函数关系式(并写出这个函数的定义域);
(Ⅱ)当每枚纪念章的销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出这个最大值.
查看答案
如图,在四棱锥P-ABCD中,CD∥AB,AD⊥AB,AD=DC=mAB,BC⊥PC.
(1)当manfen5.com 满分网时,求证:PA⊥BC;
(2)当manfen5.com 满分网时,试在线段PB上找一点M,使CM∥平面PAD,并说明理由.

manfen5.com 满分网 查看答案
已知△ABC中,manfen5.com 满分网
(1)求cosA
(2)求manfen5.com 满分网
查看答案
当0≤x≤1时,manfen5.com 满分网恒成立,则a的取值范围是    查看答案
已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,则下列命题中:
(1)方程f[f(x)]=x一定无实根;
(2)若a>0,则不等式f[f(x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x,使得f[f(x)]>x
(4)若a+b+c=0,则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号有    (写出所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.