满分5 > 高中数学试题 >

若两条曲线的极坐标方程分别为p=l与p=2cos(θ+),它们相交于A,B两点,...

若两条曲线的极坐标方程分别为p=l与p=2cos(θ+manfen5.com 满分网),它们相交于A,B两点,求线段AB的长.
先将原极坐标方程中的三角函数式利用和角公式化开后,两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行判断. 【解析】 由ρ=1得x2+y2=1,(2分) 又∵,∴ ∴,(4分) 由得,(8分) ∴.(10分)
复制答案
考点分析:
相关试题推荐
已知矩阵M=manfen5.com 满分网,向量α=manfen5.com 满分网,求M-1α
查看答案
manfen5.com 满分网如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EB•EC.
查看答案
设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求f(x)=x3+ax2+bx在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由;
(3)设存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域是[ks,kt],求正数k的取值范围.
查看答案
已知数列{an}满足:manfen5.com 满分网(n∈N*,a∈R,a为常数),
数列{bn}中,manfen5.com 满分网
(1)求a1,a2,a3
(2)证明:数列{bn}为等差数列;
(3)求证:数列{bn}中存在三项构成等比数列时,a为有理数.
查看答案
设F1,F2分别是椭圆C:manfen5.com 满分网的左右焦点,
(1)设椭圆C上的点manfen5.com 满分网到F1,F2两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段KF1的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPM,KPN试探究kPM•KPN的值是否与点P及直线L有关,并证明你的结论.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.