根据题意,先求出集合M的所有非空子集的个数,再根据“和谐”集合的定义,可得M中互为倒数的数有两对,两个倒数是自身的数1与-1,将其视为4个元素,可得M的子集中“和谐”集合的个数,由等可能事件的概率,可得答案.
【解析】
根据题意,M中共8个元素,则M的非空子集有28-1=255个,
进而可得:“和谐”集合中的元素两两成对,互为倒数,观察集合M,互为倒数的数有两对,即2与,3与;包括两个倒数是自身的数1与-1,可将这些数看作是四个元素,
由于包括四个元素的集合的非空子集是24-1=15,则M的子集中,“和谐”集合的个数为15;
故“和谐”集合的概率是=,
故答案为.