一个截面为抛物线形的旧河道(如图1),河口宽AB=4米,河深2米,现要将其截面改造为等腰梯形(如图2),要求河道深度不变,而且施工时只能挖土,不准向河道填土.
(1)建立恰当的直角坐标系并求出抛物线弧AB的标准方程;
(2)试求当截面梯形的下底(较长的底边)长为多少米时,才能使挖出的土最少?
考点分析:
相关试题推荐
投掷四枚不同的金属硬币A、B、C、D,假定A、B两枚正面向上的概率均为
,另两枚C、D为非均匀硬币,正面向上的概率均为a(0<a<1),把这四枚硬币各投掷一次,设ξ表示正面向上的枚数.
(1)若A、B出现一正一反与C、D出现两正的概率相等,求a的值;
(2)求ξ的分布列及数学期望(用a表示);
(3)若出现2枚硬币正面向上的概率最大,试求a的取值范围.
查看答案
在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(Ⅰ) 求证:AB∥平面DEG;
(Ⅱ) 求证:BD⊥EG;
(Ⅲ) 求二面角C-DF-E的余弦值.
查看答案
设函数
的最大值为M,最小正周期为T.
(Ⅰ)求M、T;
(Ⅱ)若有10个互不相等的正数x
i满足f(x
i)=M,且x
i<10π(i=1,2,…,10),求x
1+x
2+…+x
10的值.
查看答案
如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列{a
n}(n∈N
*)的前12项,如下表所示:
a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 |
x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | x5 | y5 | x6 | y6 |
按如此规律下去,则a
2009+a
2010+a
2011=
.
查看答案
若函数
上有最小值,则a的取值范围为
.
查看答案