满分5 > 高中数学试题 >

在区间[0,1]上任取两个实数a、b,则函数在区间(-1,1)上有且仅有一个零点...

在区间[0,1]上任取两个实数a、b,则函数manfen5.com 满分网在区间(-1,1)上有且仅有一个零点的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
本题考查的知识点是几何概型的意义,关键是要找出函数在区间(-1,1)上有且仅有一个零点时(a,b)点对应的图形的面积,并将其代入几何概型的计算公式,进行求解. 【解析】 若函数在区间(-1,1)上有且仅有一个零点 则f(0)•f(1)<0, 即-b•(+a-b)<0, 即b, 如下图,满足条件的(a,b)落在阴影上, ∵S阴影=1-=, 故选C.
复制答案
考点分析:
相关试题推荐
直线2x-y+m=0与圆x2+y2=5交于A、B,O为坐标原点,若OA⊥OB,则m的值为( )
A.±5
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知函数f(x)的定义域为(-2,2),导函数为f′(x)=x2+2cosx且f(0)=0,则满足f(1+x)+f(x2-x)>0的实数x的取值范围为( )
A.(-1,1)
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设全集U=I,M={x|y=ln(1-x)},N={x|2x(x-2)<1},则右图中阴影部分表示的集合为( )
manfen5.com 满分网
A.{x|x≥1}
B.{x|1≤x<2}
C.{x|0<x≤1}
D.{x|x≤1}
查看答案
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆manfen5.com 满分网在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线manfen5.com 满分网(t为参数),manfen5.com 满分网(θ为参数).
(Ⅰ)当manfen5.com 满分网时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求manfen5.com 满分网的最大值.
查看答案
已知函数f(x)=lnx,manfen5.com 满分网
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)在(I)的结论下,设φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.