满分5 > 高中数学试题 >

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+...

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数manfen5.com 满分网,求函数f(n)的最小值;
(3)设manfen5.com 满分网表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
(1)把点P代入直线方程,可得an+1-an=1进而判断数列{an}是以1为首项,1为公差的等差数列数列{an}的通项公式可得. (2)分别表示出f(n)和f(n+1),通过f(n+1)-f(n)>0判断f(n)单调递增,故f(n)的最小值是 (3)把(1)中的an代入求得bn,进而求得最后(n-1)Sn-1-(n-2)Sn-2=nSn-n=n(Sn-1),判断存在关于n的整式g(x)=n. 【解析】 (1)由点P(an,an+1)在直线x-y+1=0上, 即an+1-an=1,且a1=1,数列{an}是以1为首项, 1为公差的等差数列an=1+(n-1)•1=n(n≥2), a1=1同样满足,所以an=n (2) 所以f(n)是单调递增,故f(n)的最小值是 (3),可得, nSn-(n-1)Sn-1=Sn-1+1, (n-1)Sn-1-(n-2)Sn-2=Sn-2+1S2-S1=S1+1nSn-S1 =S1+S2+S3++Sn-1+n-1S1+S2+S3++Sn-1 =nSn-n=n(Sn-1),n≥2g(n)=n 故存在关于n的整式g(x)=n, 使得对于一切不小于2的自然数n恒成立.
复制答案
考点分析:
相关试题推荐
设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于manfen5.com 满分网
查看答案
设动点P(x,y)(x≥0)到定点manfen5.com 满分网的距离比它到y轴的距离大manfen5.com 满分网,记点P的轨迹为曲线C,
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P的轨迹上,EF是圆M在y轴上截得的弦,当M运动时弦长|EF|是否为定值?请说明理由.
查看答案
如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,BB1=C1C,∠BCC1=manfen5.com 满分网
(1)求证:C1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1上确定一点E的位置,使得EA⊥EB1
(3)在(2)的条件下,求二面角A-EB1-A1的平面角的正切值.

manfen5.com 满分网 查看答案
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为manfen5.com 满分网,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
查看答案
已知向量manfen5.com 满分网=(sinA,cosA),manfen5.com 满分网=(manfen5.com 满分网,-1),manfen5.com 满分网manfen5.com 满分网=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.