满分5 > 高中数学试题 >

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多...

甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>manfen5.com 满分网),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为manfen5.com 满分网
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
(1)已知各局胜负相互独立,第二局比赛结束时比赛停止,包含甲连胜2局或乙连胜2局,写出甲连胜两局的概率和乙连胜两局的概率求和为.解出关于P的方程. (2)因为比赛进行到有一人比对方多2分或下满6局时停止,所以ξ的所有可能取值为2,4,6,而ξ=2已经做出概率,只要求出ξ=4或ξ=6时的概率即可,最后求出期望. 【解析】 (1)当甲连胜2局或乙连胜2局时, 第二局比赛结束时比赛停止,故, 解得 (2)依题意知ξ的所有可能取值为2,4,6, 设每两局比赛为一轮,则该轮结束时比赛停止的概率为, 若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分, 此时,该轮比赛结果对下轮比赛是否停止没有影响,从而有, 则随机变量ξ的分布列为: 故.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足manfen5.com 满分网
(1)求证:数列manfen5.com 满分网(n∈N*)是等比数列;
(2)设manfen5.com 满分网,数列{cn}的前n项和Tn,求证:对任意的n∈N*,Tnmanfen5.com 满分网
查看答案
如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N.
(Ⅰ)求二面角B1-AM-N的平面角的余弦值;
(Ⅱ)求点B1到平面AMN的距离.

manfen5.com 满分网 查看答案
已知△ABC的内角A、B、C所对的边分别为a、b、c,且a=2,manfen5.com 满分网
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积S=4,求b、c的值.
查看答案
如果关于x的不等式|x-3|+|x-4|<a的解集不是空集,则实数a的取值范围是    查看答案
manfen5.com 满分网如图是一个空间几何体的三视图,则该几何体的外接球的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.