满分5 > 高中数学试题 >

已知抛物线C1:y2=4x,圆C2:(x-1)2+y2=1,过抛物线焦点F的直线...

已知抛物线C1:y2=4x,圆C2:(x-1)2+y2=1,过抛物线焦点F的直线l交C1于A,D两点(点A在x轴上方),直线l交C2于B,C两点(点B在x轴上方).
(Ⅰ)求|AB|•|CD|的值;
(Ⅱ)设直线OA、OB、OC、OD的斜率分别为m、n、p、q,且满足m+n+p+q=3manfen5.com 满分网,并且|AB|,|BC|,|CD|成等差数列,求出所有满足条件的直线l的方程.

manfen5.com 满分网
(1)利用抛物线的定义和|AF|=|AB|+1就可得出|AB|=xA,同理可得:|CD|=xD,要分l⊥x轴和l不垂直x轴两种情况分别求值,当l⊥x轴时易求,当l不垂直x轴时,将直线的方程代入抛物线方程,利用根与系数关系可求得. (2)首先在第1问得基础上和|AB|,|BC|,|CD|成等差数的关系用坐标表示,就可得出k的值,然后再把m+n+p+q=用坐标表示,再联立直线和圆的方程利用根与系数关系,把几个坐标的关系式联合起来就可确定k的值,从而求出此时的直线方程. 【解析】 (1)∵y2=4x,焦点F(1,0),准线 l:x=-1. 由定义得:|AF|=xA+1,又∵|AF|=|AB|+1,∴|AB|=xA同理:|CD|=xD 当l⊥x轴时,则xD=xA=1,∴|AB|×|CD|=1           当l:y=k(x-1)时,代入抛物线方程,得:k2x2-(2k2+4)x+k2=0,∴xAxD=1,∴|AB|×|CD|=1 综上所述,|AB|×|CD|=1 (2)∵|AB|,|BC|,|CD|成等差,且|AB|=xA,|BC|=2,|CD|=xD,∴xA+xD=4 由(1)得:,∴ ∵l:y=k(x-1),∴ 同理: ∴ 又 把y=k(x-1)代入(x-1)2+y2=1得,(k2+1)x2-2(1+k2)x+k2=1,∵k2=2,∴3x2-6x+2=0 ∴, 所以所求直线L的方程为
复制答案
考点分析:
相关试题推荐
已知曲线C1:y=manfen5.com 满分网+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.
(I)求证:直线m与曲线C1、C2都相切,且切于同一点;
(II)设直线x=t(t>0)与曲线C1、C2及直线m分别交于M、N、P,记f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.
查看答案
已知数列{an}的前n项和为Sn,an=1,若数列{Sn+1}是公比为2的等比数列.bn=n•2n+(-1)n•λan,n∈N*,
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}是递增数列,求实数λ的取值范围.
查看答案
一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
(1)求证:AC⊥BD;
(2)求三棱锥E-BCD的体积.

manfen5.com 满分网 查看答案
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2-bc,
(Ⅰ)求:2sinBcosC-sin(B-C)的值;
(Ⅱ)若b+c=2,设BC的中点为E,求线段AE长度的最小值.
查看答案
设(a,b)为有序实数对,其中a是从区间A=(-3,1)中任取的一个整数,b是从区间B=(-2,3)中任取的一个整数.
(Ⅰ)请列举出(a,b)各种情况;
(Ⅱ)求“b-a∈A∪B”的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.