满分5 > 高中数学试题 >

如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且...

如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证;AE∥平面BFD;
(Ⅲ)求三棱锥C-BGF的体积.

manfen5.com 满分网
(1)先证明AE⊥BC,再证AE⊥BF,由线面垂直的判定定理证明结论. (2)利用F、G为边长的中点证明FG∥AE,由线面平行的判定定理证明结论. (3)运用等体积法,先证FG⊥平面BCF,把原来的三棱锥的底换成面BCF,则高就是FG,代入体积公式求三棱锥的体积. 【解析】 (Ⅰ)证明:∵AD⊥平面ABE,AD∥BC, ∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF ∴AE⊥平面BCE.(4分) (Ⅱ)证明:依题意可知:G是AC中点, ∵BF⊥平面ACE,则CE⊥BF,而BC=BE,∴F是EC中点.(6分) 在△AEC中,FG∥AE,∴AE∥平面BFD.(8分) (Ⅲ)【解析】 ∵AE∥平面BFD,∴AE∥FG,而AE⊥平面BCE, ∴FG⊥平面BCE,∴FG⊥平面BCF,(10分) ∵G是AC中点,∴F是CE中点,且, ∵BF⊥平面ACE,∴BF⊥CE.∴Rt△BCE中,. ∴,(12分)∴(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=kx+b的图象与x,y轴分别相交于点A、B,manfen5.com 满分网manfen5.com 满分网分别是与x,y轴正半轴同方向的单位向量),函数g(x)=x2-x-6.
(1)求k,b的值;
(2)当x满足f(x)>g(x)时,求函数manfen5.com 满分网的最小值.
查看答案
设A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线)
(1)求证:manfen5.com 满分网manfen5.com 满分网垂直.
(2)当manfen5.com 满分网manfen5.com 满分网时,求sinθ的值.
查看答案
设椭圆manfen5.com 满分网的两个焦点分别为F1、F2,点P在椭圆上,且manfen5.com 满分网,则椭圆的离心率等于    查看答案
已知manfen5.com 满分网manfen5.com 满分网,…manfen5.com 满分网均为实数),请推测a=   
b=    查看答案
数列{an}的前n项和Sn=n2-4n+2,则|a1|+|a2|+…+|a10|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.