满分5 > 高中数学试题 >

对于三次函数f(x)=ax3+bx2+cx+d(a≠0). 定义:(1)设f''...

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”;
定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)成立,则函数y=f(x)的图象关于点(x,f(x))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)
(1)根据“拐点”的定义求出f''(x)=0的根,然后代入函数解析式可求出“拐点”A的坐标. (2)由(1)知“拐点”坐标是(1,2),然后计算f(1+x)+f(1-x)可得等于2f(1),根据定义(2)可得结论,一般地,三次函数f(x)=ax3+bx2+cx+d(a≠0)的“拐点”是,它就是f(x)的对称中心. (3)根据“拐点”的定义可写出符合条件的三次函数. 【解析】 (1)依题意,得:f'(x)=3x2-6x+2,∴f''(x)=6x-6.…(2分) 由f''(x)=0,即6x-6=0.∴x=1,又 f(1)=2, ∴f(x)=x3-3x2+2x+2的“拐点”坐标是(1,2).…(4分) (2)由(1)知“拐点”坐标是(1,2). f(1+x)+f(1-x)=(1+x)3-3(1+x)2+2(1+x)+2+(1-x)3-3(1-x)2+2(1-x)+2=2+6x2-6-6x2+4+4=4=2f(1), 由定义(2)知:f(x)=x3-3x2+2x+2关于点(1,2)对称.…(8分) 一般地,三次函数f(x)=ax3+bx2+cx+d(a≠0)的“拐点”是,它就是f(x)的对称中心.…(10分) (或者:任何一个三次函数都有拐点;任何一个三次函数都有对称中心;任何一个三次函数平移后可以是奇函数…)都可以给分 (3)G(x)=a(x+1)3+b(x+1)+3(a≠0)或写出一个具体的函数, 如G(x)=x3+3x2+3x+4或G(x)=x3+3x2-x.…(12分)
复制答案
考点分析:
相关试题推荐
已知直线y=-x+1与椭圆manfen5.com 满分网=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为manfen5.com 满分网,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离率e∈manfen5.com 满分网时,求椭圆的长轴长的最大值.
查看答案
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn
(3)设cn=an•bn,求数列{cn}的前n项和Tn
查看答案
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证;AE∥平面BFD;
(Ⅲ)求三棱锥C-BGF的体积.

manfen5.com 满分网 查看答案
已知函数f(x)=kx+b的图象与x,y轴分别相交于点A、B,manfen5.com 满分网manfen5.com 满分网分别是与x,y轴正半轴同方向的单位向量),函数g(x)=x2-x-6.
(1)求k,b的值;
(2)当x满足f(x)>g(x)时,求函数manfen5.com 满分网的最小值.
查看答案
设A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线)
(1)求证:manfen5.com 满分网manfen5.com 满分网垂直.
(2)当manfen5.com 满分网manfen5.com 满分网时,求sinθ的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.