如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:
(1)∠DEA=∠DFA;
(2)AB
2=BE•BD-AE•AC.
考点分析:
相关试题推荐
已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x
2-2x-1,且g(1)=-1.
(1)求g(x)的表达式;
(2)设1<m≤e,H(x)=g(x+
)+mlnx-(m+1)x+
,求证:H(x)在[1,m]上为减函数;
(3)在(2)的条件下,证明:对任意x
1,x
2∈[1,m],恒有|H(x
1)-H(x
2)|<1.
查看答案
已知椭圆
=1(a>b>0)的离心率e=
,左、右焦点分别为F
1、F
2,点
,点F
2在线段PF
1的中垂线上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F
2M与F
2N的倾斜角分别为α,β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
查看答案
为征求个人所得税修改建议,某机构对不发居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)
(I)求居民月收入在[3000,4000)的频率;
(II)根据频率分布直方图估算样本数据的中位数;
(III)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽多少人?
查看答案
已知斜三棱柱ABC-A
1B
1C
1,侧面ACC
1A
1与底面ABC垂直,∠ABC=90°,BC=2,AC=2
,且AA
1⊥A
1C,AA1=A
1C
(Ⅰ)试判断A
1A与平面A
1BC是否垂直,并说明理由;
(Ⅱ)求底面ABC与侧面BB
1C
1C所成二面角的余弦值.
查看答案
如图所示,甲船由A岛出发向北偏东45°的方向作匀速直线航行,速度为15
海里/小时,在甲船从A岛出发的同时,乙船从A岛正南40海里处的B岛出发,朝北偏东θ(tanθ=
)的方向作匀速直线航行,速度为m海里/小时.
(I)求4小时后甲船到B岛的距离为多少海里?
(II)若两船能相遇,求m.
查看答案