满分5 > 高中数学试题 >

给出下列命题: A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对...

给出下列命题:
A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
B.已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为manfen5.com 满分网
C.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
D.若P为双曲线x2-manfen5.com 满分网=1上的一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2 或6.
其中正确的命题是    (把所有正确的命题的选项都填上)
根据函数图象对称变换的法则,可以判断A是否正确,根据正弦型函数的性质,我们可以判定B的对错;根正三棱锥的几何特征,我们可以判断C的真假;而由双曲线的定义及标准方程我们又可判断出D的正误,进而得到答案. 【解析】 ∵函数y=f(x-2)图象关于直线x=2对称的函数解析式为y=f[(4-x)-2]=f(2-x) 故A.函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称正确; ∵已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)的图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则函数的周期为π 故ω的值为2,又由函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,由诱导公式易得θ的值为.故B正确; 若两侧面可以是等腰直角三角形,另一侧面是等腰三角形时,所得三棱锥不是正三棱锥故C错误; 由双曲线的定义,我们根据其标准方程易判断2a=2,故|PF2|=4,则|PF1|=2 或6,即D正确 故答案为:A、B、D
复制答案
考点分析:
相关试题推荐
讲一个半径为5cm的水晶球放在如图所示的工艺架上,支架是由三根金属杆PA、PB、PC组成,它们两两成60°角.则水晶球的球心到支架P的距离是    cm.
manfen5.com 满分网 查看答案
设变量x,y满足约束条件manfen5.com 满分网,则目标函数z=2x+y的最小值为    查看答案
manfen5.com 满分网展开式中的所有二项式系数和为512,则该展开式中的常数项为    查看答案
已知S={1,2,3,…2010},A⊆S且A中有三个元素,若A中的元素可构成等差数列,则这样的集合A共有( )
A.C20103
B.A32010
C.2A21005
D.2C21005
查看答案
已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值( )
A.恒大于0
B.恒小于0
C.可能等于0
D.可正可负
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.