满分5 > 高中数学试题 >

如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且,. (1)求椭圆...

如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且manfen5.com 满分网manfen5.com 满分网
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

manfen5.com 满分网
(1)设出椭圆的方程,根据题意可知c,进而根据求得a,进而利用a和c求得b,则椭圆的方程可得. (2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,设出P,Q的坐标,利用点M,F的坐标求得直线PQ的斜率,设出直线l的方程,与椭圆方程联立,由韦达定理表示出x1+x2和x1x2,进而利用求得m. 解.(1)如图建系,设椭圆方程为,则c=1 又∵即(a+c)•(a-c)=1=a2-c2,∴a2=2 故椭圆方程为 (2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,则 设P(x1,y1),Q(x2,y2),∵M(0,1),F(1,0),故kPQ=1, 于是设直线l为y=x+m,由得3x2+4mx+2m2-2=0 ∵又yi=xi+m(i=1,2) 得x1(x2-1)+(x2+m)(x1+m-1)=0即2x1x2+(x1+x2)(m-1)+m2-m=0由韦达定理得 解得或m=1(舍)经检验符合条件
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)当a=1时,求f(x)的极小值;(2)设g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a).
查看答案
已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项.
(Ⅰ)求数列an的通项公式{an};
(Ⅱ)令manfen5.com 满分网,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的最小的正整数n.
查看答案
如图已知四棱锥S-ABCD的底面是直角梯形,AB∥DC,∠DAB=90°,SA⊥底面ABCD,且SA=AD=DC=manfen5.com 满分网是SB的中点.
(1)证明:平面SAD⊥平面SCD;
(2)求AC与SB所成的角;
(3)求二面角M-AC-B的大小.

manfen5.com 满分网 查看答案
已知将一枚残缺不均匀的硬币连抛三次落在平地上,三次都正面朝上的概率为manfen5.com 满分网
(1)求将这枚硬币连抛三次,恰有两次正面朝上的概率;
(2)若甲将这枚硬币连抛三次之后,乙另抛一枚质地均匀的硬币两次.若正面朝上的总次数多者为胜者,求甲获胜的概率?
查看答案
已知manfen5.com 满分网(其中ω>0)的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知manfen5.com 满分网,求角C.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.