满分5 > 高中数学试题 >

已知对于任意非零实数a和b,不等式|2a+b|+|2a-b|≥|a|(|2+x|...

已知对于任意非零实数a和b,不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,试求实数x的取值范围.
先分离出含有a,b的式子,即恒成立,问题转化为求左式的最小值即可. 【解析】 由题知,恒成立, 故|2+x|+|2-x|不大于的最小值(4分) ∵|2a+b|+||2a-b≥|2a+b+2a-b|=4|a|, 当且仅当(2a+b)(2a-b)≥0时取等号,∴的最小值等于4.(8分) ∴x的范围即为不等式|2+x|+|2-x|≤4的解. 解不等式得-2≤x≤2.(10分)
复制答案
考点分析:
相关试题推荐
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,manfen5.com 满分网).若直线l过点P,且倾斜角为manfen5.com 满分网,圆C以M为圆心、4为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.
查看答案
manfen5.com 满分网选修4-1:几何证明选讲
如图,在△ABC中,CM是∠ACB的平分线,△AMC的外接圆O交BC于点N.若AC=manfen5.com 满分网AB,求证:BN=2AM.
查看答案
设椭圆manfen5.com 满分网的离心率manfen5.com 满分网,右焦点到直线manfen5.com 满分网的距离manfen5.com 满分网,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
查看答案
已知函数f(x)=-x3+ax2-4(a∈R),f′(x)是f(x)的导函数.
(1)当a=2时,对于任意的m∈[-1,1],n∈[-1,1]求f(m)+f′(n)的最小值;
(2)若存在x∈(0,+∞),使f(x)>0求a的取值范围.
查看答案
如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.