(1)欲将曲线C化为普通方程,只须要消去参数θ即可,利用三角函数中的平方关系即可消去参数θ.
(2)欲求极坐标系下的极坐标方程,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标系即可.
【解析】
(1)∵曲线C:(θ为参数),
∴2cosθ=x,2sinθ=y-2,两式平方相加得:
x2+(y-2)2=4.即为曲线C化为普通方程.
(2)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换得:
ρ2-4ρsinθ=0,
即:ρ=4sinθ,即为极坐标系下的极坐标方程.
故答案为:x2+(y-2)2=4;ρ=4sinθ.