满分5 > 高中数学试题 >

某甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子;某乙也有一个放有3个红...

某甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子;某乙也有一个放有3个红球、2个白球、1个黄球共6个球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一个球,直到取到红球为止,求甲取球次数ξ的数学期望;
(Ⅱ)若甲、乙两人各从自己的箱子里任取一球比颜色,规定同色时为甲胜,异色时为乙胜,这个游戏规则公平吗?请说明理由.
(Ⅰ)由题意知甲取球次数ξ的取值为1,2,3,4,分别求出其发生的概率,进而求出次数ξ的数学期望. (Ⅱ)由题意可得,求出两人各自从自己箱子里任取一球不同的取法,以及是同色球的取法,再根据等可能事件的概率可得答案. 【解析】 (Ⅰ)由题意知甲取球次数ξ的取值为1,2,3,4 所以;;; …(4分) 则甲取球次数ξ的数学期望为: …(6分) (Ⅱ)由题意,两人各自从自己箱子里任取一球比颜色共有C61•C61=36(种) 不同的情形…(8分) 每种情形都是等可能的,记甲获胜为事件A,则…(11分) 所以甲获胜的概率小于乙获胜的概率,这个游戏规则不公平.…(12分)
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
查看答案
给出下列四个命题:
①命题:“设a,b∈R,若ab=0,则a=0或b=0”的否命题是“设a,b∈R,若ab≠0,则a≠0且b≠0”; 
②将函数y=manfen5.com 满分网sin(2x+manfen5.com 满分网)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移manfen5.com 满分网个单位长度,得到函数y=manfen5.com 满分网cosx的图象; 
③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1); 
④函数f(x)=ex-x-1(x∈R)有两个零点.
其中所有真命题的序号是    查看答案
manfen5.com 满分网一个三棱锥的三视图如图所示,其正视图、侧视图、俯视图的面积分别是1,2,4,则这个几何体的体积为    查看答案
manfen5.com 满分网已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为manfen5.com 满分网,则a的值为    查看答案
已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.