满分5 > 高中数学试题 >

已知函数f(x)=|x-2|,g(x)=-|x+3|+m. (1)解关于x的不等...

已知函数f(x)=|x-2|,g(x)=-|x+3|+m.
(1)解关于x的不等式f(x)+a-1>0(a∈R);
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.
(1)不等式转化为|x-2|+|a-1>0,对参数a进行分类讨论,分类解不等式; (2)函数f(x)的图象恒在函数g(x)图象的上方,可转化为不等式|x-2|+|x+3|>m恒成立,利用不等式的性质求出|x-2|+|x+3|的最小值,就可以求出m的范围. 【解析】 (Ⅰ)不等式f(x)+a-1>0即为|x-2|+a-1>0, 当a=1时,解集为x≠2,即(-∞,2)∪(2,+∞); 当a>1时,解集为全体实数R; 当a<1时,解集为(-∞,a+1)∪(3-a,+∞). (Ⅱ)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|>-|x+3|+m对任意实数x恒成立, 即|x-2|+|x+3|>m恒成立,(7分) 又由不等式的性质,对任意实数x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,于是得m<5, 故m的取值范围是(-∞,5).
复制答案
考点分析:
相关试题推荐
在直角坐标系xOy中,曲线M的参数方程为manfen5.com 满分网(θ为参数)若以该直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线N的极坐标方程为ρsin(θ+manfen5.com 满分网)=manfen5.com 满分网(其中t为常数).
(1)若曲线N与曲线M只有一个公共点,求t的取值范围;
(2)当t=-2时,求曲线M上的点与曲线N上的点的最小距离.
查看答案
已知直线l的参数方程:manfen5.com 满分网(t为参数)和圆C的极坐标方程:manfen5.com 满分网
(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
查看答案
在直角坐标系xOy中,直线l的参数方程为manfen5.com 满分网(t为参数)若以O点为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上各点的横坐标缩短为原来的manfen5.com 满分网,再将所得曲线向左平移1个单位,得到曲线CΘ,求曲线CΘ上的点到直线l的距离的最小值.
查看答案
已知圆C:manfen5.com 满分网(θ为参数)和直线θl:manfen5.com 满分网(其中t为参数,α为直线l的倾斜角)
(1)当manfen5.com 满分网时,求圆上的点到直线l的距离的最小值;
(2)当直线l与圆C有公共点时,求α的取值范围.
查看答案
在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为manfen5.com 满分网,则直线的极坐标方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.