满分5 > 高中数学试题 >

已知函数f(x)=(a+1)lnx+ax2+1 (1)讨论函数f(x)的单调性;...

已知函数f(x)=(a+1)lnx+ax2+1
(1)讨论函数f(x)的单调性;
(2)设a<-1.如果对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.
(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间. (2)根据第一问的单调性先对|f(x1)-f(x2)|≥4|x1-x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a的范围. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞).. 当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加; 当a≤-1时,f′(x)<0,故f(x)在(0,+∞)单调减少; 当-1<a<0时,令f′(x)=0,解得. 则当时,f'(x)>0;时,f'(x)<0. 故f(x)在单调增加,在单调减少. (Ⅱ)不妨假设x1≥x2,而a<-1,由(Ⅰ)知在(0,+∞)单调减少, 从而∀x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2| 等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1① 令g(x)=f(x)+4x,则 ①等价于g(x)在(0,+∞)单调减少,即. 从而 故a的取值范围为(-∞,-2].(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2nmanfen5.com 满分网-x在[0,+∞)上最小值是an(n∈N*
(1)求数列{an}的通项公式;
(2)令bn=manfen5.com 满分网,求证:b1+b2+…+bnmanfen5.com 满分网
查看答案
休假次数123
人数5102015
某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:
(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2-ηx-1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
查看答案
manfen5.com 满分网如图,在直四棱柱ABCD-A′B′C′D′中,底面ABCD为梯形,BC∥AD,AA′=AB=manfen5.com 满分网,AD=2BC=2,直线AD与面ABB'A'所成角为45°.
(Ⅰ)求证:DB⊥面ABB'A';
(Ⅱ)求证:AD'⊥B'C;
(Ⅲ)求二面角D-AB'-B的正切值.
查看答案
已知函数manfen5.com 满分网(ω>0,x∈R),且函数f(x)的最小正周期为π.
(1)求函数f(x)的解析式并求f(x)的最小值;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(B)=1,manfen5.com 满分网,且manfen5.com 满分网,求边长b.
查看答案
关于y=f(x),给出下列五个命题:
①若f(-1+x)=f(1+x),则y=f(x)是周期函数;
②若f(1-x)=-f(1+x),则y=f(x)为奇函数;
③若函数y=f(x-1)的图象关于x=1对称,则y=f(x)为偶函数;
④函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称;
⑤若f(1-x)=f(1+x),则y=f(x)的图象关于点(1,0)对称.
填写所有正确命题的序号    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.