将圆C的方程整理为标准形式,找出圆心C的坐标与半径r,根据直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,得到以C为圆心,2为半径的圆与直线y=kx-2有公共点,即圆心到直线y=kx-2的距离小于等于2,利用点到直线的距离公式列出关于k的不等式求出不等式的解集即可得到k的范围.
【解析】
将圆C的方程整理为标准方程得:(x-4)2+y2=1,
∴圆心C(4,0),半径r=1,
∵直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′(x-4)2+y2=4与y=kx-2有公共点,
∵圆心(4,0)到直线y=kx-2的距离d=≤2,
解得:0≤k≤.
故选A