已知函数f(x)=
(其中a为常数).
(Ⅰ)当a=0时,求函数的单调区间;
(Ⅱ) 当0<a<1时,设函数f(x)的3个极值点为x
1,x
2,x
3,且x
1<x
2<x
3.证明:x
1+x
3>
.
考点分析:
相关试题推荐
已知点M到定点F(1,0)的距离和它到定直线l:x=4的距离的比是常数
,设点M的轨迹为曲线C.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)已知曲线C与x轴的两交点为A、B,P是曲线C上异于A,B的动点,直线AP与曲线C在点B处的切线交于点D,当点P运动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
查看答案
如图,在四边形ABCD中,AB=AD=4,BC=CD=
,点E为线段AD上的一点.现将△DCE沿
线段EC翻折到PAC(点D与点P重合),使得平面PAC⊥平面ABCE,连接PA,PB.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且点E为线段AD的中点,求二面角P-AB-C的大小.
查看答案
某竞猜活动有4人参加,设计者给每位参与者1道填空题和3道选择题,答对一道填空题得2分,答对一道选择题得1分,答错得0分,若得分总数大于或等于4分可获得纪念品,假定参与者答对每道填空题的概率为
,答对每道选择题的概率为
,且每位参与者答题互不影响.
(Ⅰ)求某位参与竞猜活动者得3分的概率;
(Ⅱ)设参与者获得纪念品的人数为ξ,求随机变量ξ的分布列及数学期望.
查看答案
已知函数f(x)=cosωx(
sinωx-cosωx)+
的周期为2π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA=2c-
a,求f(B)的值.
查看答案
如图放置的边长为1的正方形ABCD的顶点A、D分别在x轴、y轴正半轴上(含原点)上滑动,则
的最大值是
.
查看答案