某报社为了解大学生对国产电影的关注程度,就“是否关注国产电影”这一问题,随机调查了某大学的60名男生和60名女生,得到如下列联表:
| 男生 | 女生 | 总计 |
关注国产电影 | 50 | 40 | 90 |
不关注国产电影 | 10 | 20 | 30 |
总计 | 60 | 60 | 120 |
(1)从这60名女生中按“是否关注国产电影”采取分层抽样,抽取一个容量为6的样本,再从中随机选取2名进行深度采访,求“选到关注国产电影的女生与不关注国产电影的女生各1名”的概率;
(2)根据以上列联表,问有多大把握认为“大学生性别与关注国产电影有关”?
附:
P(k2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
K
,其中n=a+b+c+d为样本容量.
考点分析:
相关试题推荐
气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:
日最高气温t(单位:℃) | t≤22℃ | 22℃<t≤28℃ | 28℃<t≤32℃ | t>32℃ |
天数 | 6 | 12 | X | Y |
由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
(1)若把频率看作概率,求X,Y的值;
(2)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此欠是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
附:
P(K2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0,.005 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案
随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n个人,其中男性占调查人数的
.已知男性中有一半的人的休闲方式是运动,而女性只有
的人的休闲方式是运动.
(1)完成下列2×2列联表:
(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?
(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?
参考公式:K
,其中n=a+b+c+d.
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
查看答案
某地10户家庭的年收入x(万元)和年饮食支出y(万元)的统计资料如下表所示:
年收入x(万元) | 2 | 4 | 4 | 6 | 6 | 6 | 7 | 7 | 8 | 10 |
年饮食支出y(万元) | 0.9 | 1.4 | 1.6 | 2.0 | 2.1 | 1.9 | 1.8 | 2.1 | 2.2 | 2.3 |
(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系;
(2)如果该地某家庭年收入为9万元,预测其年饮食支出.(注:得出的结果保留到小数点后3位)
查看答案
弹簧长度y(cm)随所挂物体重量x(g)的不同而变化的情况如下表所示:
x | 5 | 10 | 15 | 20 | 25 | 30 |
y | 7.25 | 8.12 | 8.95 | 9.90 | 10.96 | 11.80 |
(1)画出散点图;
(2)求y与x的回归直线方程;
(3)预测所挂物体重量为27g时的弹簧长度(精确到0.01cm).
查看答案
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的数学平均分.
查看答案