满分5 > 高中数学试题 >

已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正...

已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l过点P(0,2)且与椭圆相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.
(Ⅰ)先设出椭圆标准方程,根据题意可知b=c,根据准线方程求得c和a的关系,进而求得a,b和c,则椭圆方程可得. (Ⅱ)设出直线l的方程和A,B的坐标,进而把直线方程与椭圆方程联立,消去y,根据判别式大于0求得k的范围,根据韦达定理求得x1+x2,x1x2的表达式,表示出|AB|,求得原点到直线的距离,进而表示出三角形的面积,两边平方根据一元二次方程,建立关于S的不等式,求得S的最大值,进而求得k,则直线方程可得. 【解析】 设椭圆方程为 (Ⅰ)由已知得 ∴所求椭圆方程为. (Ⅱ)由题意知直线l的斜率存在,设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2) 由,消去y得关于x的方程: (1+2k2)x2+8kx+6=0 由直线l与椭圆相交于A、B两点, ∴△>0⇒64k2-24(1+2k2)>0 解得 又由韦达定理得 ∴= 原点O到直线l的距离 ∵. 对两边平方整理得:4S2k4+4(S2-4)k2+S2+24=0(*) ∵S≠0, 整理得: 又S>0,∴ 从而S△AOB的最大值为, 此时代入方程(*)得4k4-28k2+49=0∴ 所以,所求直线方程为:.
复制答案
考点分析:
相关试题推荐
某市城调队就本地居民的月收入调查了10000人,并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1500,2000),单位:元).
manfen5.com 满分网
(Ⅰ)求随机抽取一位居民,估计该居民月收入在[2500,3500)的概率,并估计这10000人的人均月收入;
(Ⅱ)若将频率视为概率,从本地随机抽取3位居民(看作有放回的抽样),求月收入在[2500,3500)上居民人数x的数学期望.
查看答案
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(Ⅰ)求证:平面A1BC⊥平面A1DC;
(Ⅱ)若CD=2,求BE与平面A1BC所成角的余弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.

manfen5.com 满分网 查看答案
在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.
(1)求c的值;
(2)设manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
已知函数f(x)=manfen5.com 满分网msin(π-ωx)-msin(manfen5.com 满分网-ωx)(m>0,ω>0)的图象上两相邻最高点的坐标分别为(manfen5.com 满分网,2)和(manfen5.com 满分网,2).
(Ⅰ)求m与ω的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求manfen5.com 满分网的取值范围.
查看答案
设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x+n)≥f(x),则称f(x)为M上的n高调函数,如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.