满分5 > 高中数学试题 >

已知数列{an}满足:a1=1,a2=,且an+2=. (I)求证:数列为等差数...

manfen5.com 满分网已知数列{an}满足:a1=1,a2=manfen5.com 满分网,且an+2=manfen5.com 满分网
(I)求证:数列manfen5.com 满分网为等差数列;
(II)求数列{an}的通项公式;
(III)求下表中前n行所有数的和Sn
(1)把所给的递推式整理,构造要求的数列形式,仿写一个递推式,用数列的后一项去减前一项,合并同类项,发现满足等差中项公式,得到结论. (2)写出(1)中的数列通项,用叠乘的方法把其他项都约去,得到第n项和第一项,因第一项可求出结果,所以得到通项公式. (3)根据表中构造的新数列,由它的特点写出第n行的各数之和,代入所求数列的通项,整理出组合数形式,用二项式定理的各项系数之间的关系,得到第n行的各数之和,于是构造一个新数列用等比数列前n项和公式求解. 【解析】 (I)∵ = =, ∴, ∴数列满足等差中项公式为等差数列. (II)由(I)得 故当n≥2时, 即 又当n=1时,满足上式 所以通项公式为. (III)∵ ∴第n行各数之和 ∴表中前n行所有数的和 Sn=(22-2)+(23-2)++(2n+1-2) =(22+23++2n+1)-2n = =2n+2-2n-4
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;
(Ⅱ)是否存在正实数a,使对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,若存在,求出实数a的取值范围;若不存在,说明理由.
查看答案
manfen5.com 满分网如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.
查看答案
用射击的方法引爆装有汽油的大汽油罐,已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功(可以是两次不连续的命中),每次射击命中率都是manfen5.com 满分网,每次命中与否互相独立.
(1)求油罐被引爆的概率.
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望.
查看答案
已知函数f(x)=Asin(ωx+ϕ) (x∈R,A>0,ω>0,|ϕ|<manfen5.com 满分网)的部分图象如图所示,
(Ⅰ)试确定f(x)的解析式;
(Ⅱ)若manfen5.com 满分网=manfen5.com 满分网,求cos(manfen5.com 满分网-α)的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过p点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=    cm. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.