满分5 > 高中数学试题 >

已知点H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满...

已知点H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C;
(Ⅱ)过定点D(m,0)(m>0)作直线l交轨迹C于A、B两点,E是D点关于坐标原点O的对称点,求证:∠AED=∠BED;
(Ⅲ)在(Ⅱ)中,是否存在垂直于x轴的直线l'被以AD为直径的圆截得的弦长恒为定值?若存在求出l'的方程;若不存在,请说明理由.

manfen5.com 满分网
(I)设M(x,y),P(0,y'),Q(x',0)则可得 ,,由 代入整理可求点M的轨迹C; (II)要证明∠AED=∠BED,根据直线的倾斜角与斜率的关系,只要证KAE=-KBE即可;分两种情况讨论:(1)当直线l垂直于x轴时,根据抛物线的对称性,有∠AED=∠BED;(2)当直线l与x轴不垂直时,利用直线的斜率进行转换即得; (III)假设存在满足条件的直线,根据垂径定理得性质可知,要使弦长为定值,则只要圆心到直线的距离为定值即可. 【解析】 (Ⅰ)设M(x,y),P(0,y'),Q(x',0)(x'>0)∵,. ∴且(3,y')•(x,y-y')=0…(2分) ∴.…(3分)∴y2=4x(x>0)…(4分) ∴动点M的轨迹C是以O(0,0)为顶点,以(1,0)为焦点的抛物线(除去原点).…(5分) (Ⅱ):(1)当直线l垂直于x轴时,根据抛物线的对称性,有∠AED=∠BED;…(6分) (2)当直线l与x轴不垂直时,依题意,可设直线l的方程为y=k(x-m)(k≠0,m>0),A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组 消去x并整理,得ky2-4y-4km=0∴…(7分) 设直线AE和BE的斜率分别为k1、k2,则k1+k2=====…(9分) ∴tan∠AED+tan(180°-∠BED)=0∴tan∠AED=tan∠BED∵, ∴∠AED=∠BED.综合(1)、(2)可知∠AED=∠BED.…(10分) (Ⅲ)假设存在满足条件的直线l',其方程为x=a,AD的中点为O',l'与AD为直径的圆相交于点F、G,FG的中点为H,则O'H⊥FG,O'点的坐标为. ∵=, ∴|FH|2=|O'F|2-|O'H|2==(a-m+1)x1+a(m-a)…(12分) ∴|FG|2=(2|FH|)2=4[(a-m+1)x1+a(m-a)] 令a-m+1=0,得a=m-1 此时,|FG|2=4(m-1) ∴当m-1>0,即m>1时,(定值) ∴当m>1时,满足条件的直线l'存在,其方程为x=m-1;当0<m≤1时,满足条件的直线l'不存在.…(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知数列{an}满足:a1=1,a2=manfen5.com 满分网,且an+2=manfen5.com 满分网
(I)求证:数列manfen5.com 满分网为等差数列;
(II)求数列{an}的通项公式;
(III)求下表中前n行所有数的和Sn
查看答案
已知函数manfen5.com 满分网,g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;
(Ⅱ)是否存在正实数a,使对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,若存在,求出实数a的取值范围;若不存在,说明理由.
查看答案
manfen5.com 满分网如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.
查看答案
用射击的方法引爆装有汽油的大汽油罐,已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功(可以是两次不连续的命中),每次射击命中率都是manfen5.com 满分网,每次命中与否互相独立.
(1)求油罐被引爆的概率.
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望.
查看答案
已知函数f(x)=Asin(ωx+ϕ) (x∈R,A>0,ω>0,|ϕ|<manfen5.com 满分网)的部分图象如图所示,
(Ⅰ)试确定f(x)的解析式;
(Ⅱ)若manfen5.com 满分网=manfen5.com 满分网,求cos(manfen5.com 满分网-α)的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.