满分5 > 高中数学试题 >

已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且...

manfen5.com 满分网已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.
(1)依题意,设椭圆C的方程为,c=1.再利用|PF1|、|F1F2|、|PF2|构成等差数列,即可得到a,利用b2=a2-c2得到a即可得到椭圆的方程; (2)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得到关于x的一元二次方程,由直线l与椭圆C仅有一个公共点知,△=0,即可得到m,k的关系式,利用点到直线的距离公式即可得到d1=|F1M|,d2=|F2N|. 法一:当k≠0时,设直线l的倾斜角为θ,则|d1-d2|=|MN|×|tanθ|,即可得到四边形F1MNF2面积S的表达式,利用基本不等式的性质即可得出S的最大值; 法二:利用d1及d2表示出及d1d2,进而得到,再利用二次函数的单调性即可得出其最大值. 【解析】 (1)依题意,设椭圆C的方程为. ∵|PF1|、|F1F2|、|PF2|构成等差数列,∴2a=|PF1|+|PF|2=2|F1F2|=4,a=2. 又∵c=1,∴b2=3.∴椭圆C的方程为. (2)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2-12=0.                 由直线l与椭圆C仅有一个公共点知,△=64k2m2-4(4k2+3)(4m2-12)=0, 化简得:m2=4k2+3.                           设,, 法一:当k≠0时,设直线l的倾斜角为θ, 则|d1-d2|=|MN|×|tanθ|, ∴,=, ∵m2=4k2+3,∴当k≠0时,,,. 当k=0时,四边形F1MNF2是矩形,.    所以四边形F1MNF2面积S的最大值为.     法二:∵,. ∴=. 四边形F1MNF2的面积=, =.   当且仅当k=0时,,故. 所以四边形F1MNF2的面积S的最大值为.
复制答案
考点分析:
相关试题推荐
某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=manfen5.com 满分网,其中n=a+b+c+d)
查看答案
一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
manfen5.com 满分网
(1)求证:AC⊥BD;

(2)求二面角A-BD-C的平面角的大小.
查看答案
已知各项均为正数的数列{an}满足an+12-an+1an-2an2=0,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=anmanfen5.com 满分网,求使Sn+n•2n+1>50成立的正整数n的最小值.
查看答案
已知AD是△ABC的中线,若∠A=120°,manfen5.com 满分网,则manfen5.com 满分网的最小值是    查看答案
P为抛物线y2=4x上任意一点,P在y轴上的射影为Q,点M(4,5),则PQ与PM长度之和的最小值为:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.