满分5 > 高中数学试题 >

设函数f(x)=|2x-1|+|2x-3|,x∈R. (1)解不等式f(x)≤5...

设函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤5;
(2)若manfen5.com 满分网的定义域为R,求实数m的取值范围.
(1)对不等式)|2x-1|+|2x-3|≤5,分x≥,<x<和x<三种情况进行讨论,转化为一元一次不等式求解, 把求的结果求并集,就是原不等式的解集. (2)的定义域为R,转化为则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,求函数f(x)的最小值. 【解析】 (1)或或 不等式的解集为 (2)若的定义域为R,则f(x)+m≠0恒成立,即f(x)+m=0在R上无解 又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2, 所以m>-2.
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程.
已知曲线C的极坐标方程为ρ=manfen5.com 满分网,直线l的参数方程为manfen5.com 满分网(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.
查看答案
manfen5.com 满分网如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若manfen5.com 满分网,求EC的长.
查看答案
已知函数g(x)=manfen5.com 满分网,f(x)=g(x)-ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(3)若存在x1,x2∈[e,e2],使f(x1)≤f(x2)+a,求实数a的取值范围.
查看答案
manfen5.com 满分网已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案
某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=manfen5.com 满分网,其中n=a+b+c+d)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.