满分5 > 高中数学试题 >

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD...

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BCmanfen5.com 满分网manfen5.com 满分网,BEmanfen5.com 满分网manfen5.com 满分网,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.

manfen5.com 满分网
解法1:(Ⅰ)直接证明GHBC推出四边形BCHG是平行四边形. (Ⅱ)C,D,F,E四点共面.推出EF∥CH,就是EC,FH共面.又点D在直线FH上所以C,D,F,E四点共面. (Ⅲ)连接EC,证明BG⊥EA.BG⊥ED,ED∩EA=E,推出BG⊥平面ADE,然后证明平面ADE⊥平面CDE. 解法2:由平面ABEF⊥平面ABCD,AF⊥AB,得AF⊥平面ABCD,以A为坐标原点,射线AB为x轴正半轴,建立如图所示的直角坐标系A-xyz (Ⅰ)通过,又点G不在直线BC上,说明四边形BCHG是平行四边形. (Ⅱ)C,D,F,E四点共面.利用,又C∉EF,H∈FD,证明C,D,E,F四点共面. (Ⅲ)通过,即CH⊥AE,CH⊥AD,说明平面ADE⊥平面CDE 解法1:(Ⅰ)由题意知,FG=GA,FH=HD 所以GH 又BC,故GHBC 所以四边形BCHG是平行四边形. (Ⅱ)C,D,F,E四点共面.理由如下: 由BE,G是FA的中点知,BEGF,所以EF∥BG 由(Ⅰ)知BG∥CH,所以EF∥CH,故EC,FH共面.又点D在直线FH上 所以C,D,F,E四点共面. (Ⅲ)连接EG,由AB=BE,BEAG及∠BAG=90°知ABEG是正方形 故BG⊥EA.由题设知FA,FD,AB两两垂直,故AD⊥平面FABE, 因此EA是ED在平面FABE内的射影,根据三垂线定理,BG⊥ED 又ED∩EA=E,所以BG⊥平面ADE 由(Ⅰ)知CH∥BG,所以CH⊥平面ADE. 由(Ⅱ)知F∈平面CDE,故CH⊂平面CDE,得平面ADE⊥平面CDE 解法2:由平面ABEF⊥平面ABCD,AF⊥AB,得AF⊥平面ABCD, 以A为坐标原点,射线AB为x轴正半轴,建立如图所示的直角坐标系A-xyz (Ⅰ)设AB=a,BC=b,BE=c,则由题设得A(0,0,0),B(a,0,0),C(a,b,0),D(0,2b,0),E(a,0,c),G(0,0,c),H(0,b,c) 所以 于是 又点G不在直线BC上 所以四边形BCHG是平行四边形. (Ⅱ)C,D,F,E四点共面.理由如下: 由题设知F(0,0,2c),所以 又C∉EF,H∈FD,故C,D,E,F四点共面. (Ⅲ)由AB=BE得,所以 又,因此 即CH⊥AE,CH⊥AD 又AD∩AE=A,所以CH⊥平面ADE 故由CH⊂平面CDFE,得平面ADE⊥平面CDE
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任=A意一点,A1A=AB=2.
(1)求证:BC⊥平面A1AC;
(2)求三棱锥A1-ABC的体积的最大值.
查看答案
已知一个圆锥的底面半径为R,高为H,在其内部有一个高为2的内接圆柱.
(1)求圆柱的侧面积:
(2)高为何值时,圆柱的侧面积最大?
查看答案
如图(1),边长为2的正方形ABEF中,D,C分别为EF,AF上的点,且ED=CF,现沿DC把△CDF剪切、拼接成如图(2)的图形,再将△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F,A三点重合于点A′.
(1)求证:BA′⊥CD;
(2)求四面体B-A′CD体积的最大值.
manfen5.com 满分网
查看答案
已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)如果点P,Q在正视图中所示位置:P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱A1A、CC1的中点,求四棱锥C1-B1EDF的体积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.