如图,如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)若PD与平面ABCD所成角为60°,且AD=2,AB=4,求点A到平面PED的距离.
考点分析:
相关试题推荐
在长方体ABCD-A
1B
1C
1D
1中,AB=3,BC=AA
1=4,点O是AC的中点.
(1)求证:AD
1∥平面DOC
1;
(2)求异面直线AD
1和DC
1所成角的余弦值.
查看答案
如图所示,正方体ABCD-A
1B
1C
1D
1,E,F分别是AD,AA
1的中点.
(1)求直线EF和直线AB
1所成的角的大小;
(2)求二面角D-A
1C
1-D
1的正切值.
查看答案
如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
,BE
,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.
查看答案
如图,A
1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A、B的任=A意一点,A
1A=AB=2.
(1)求证:BC⊥平面A
1AC;
(2)求三棱锥A
1-ABC的体积的最大值.
查看答案
已知一个圆锥的底面半径为R,高为H,在其内部有一个高为2的内接圆柱.
(1)求圆柱的侧面积:
(2)高为何值时,圆柱的侧面积最大?
查看答案