满分5 > 高中数学试题 >

在正方体ABCD-A1B1C1D1中,M,N分别是AB,BC的中点. (1)求证...

manfen5.com 满分网在正方体ABCD-A1B1C1D1中,M,N分别是AB,BC的中点.
(1)求证:平面B1MN⊥平面BB1D1D;
(2)若在棱DD1上有一点P,使BD1∥平面PMN,求线段DP与PD1的比.
(1)连接AC,由正方形性质得AC⊥BD,又由正方体ABCD-A1B1C1D1中,M,N分别是AB,BC的中点,易得MN∥AC,则MN⊥BD.BB1⊥MN,由线面垂直的判定定理,可得MN⊥平面BB1D1D,进而由面面垂直的判定定理,可得平面B1MN⊥平面BB1D1D; (2)设MN与BD的交点是Q,连接PQ,PM,PN,由线面平行的性质定理,我们易由BD1∥平面PMN,BD1⊂平面BB1D1D,平面BB1D1D∩平面PMN=PQ,得BD1∥PQ,再由平行线分线段成比例定理,得到线段DP与PD1的比. 【解析】 (1)证明:连接AC,则AC⊥BD, 又M,N分别是AB,BC的中点, ∴MN∥AC,∴MN⊥BD. ∵ABCD-A1B1C1D1是正方体, ∴BB1⊥平面ABCD, ∵MN⊂平面ABCD, ∴BB1⊥MN, ∵BD∩BB1=B, ∴MN⊥平面BB1D1D, ∵MN⊂平面B1MN, ∴平面B1MN⊥平面BB1D1D. (2)设MN与BD的交点是Q,连接PQ,PM,PN ∵BD1∥平面PMN,BD1⊂平面BB1D1D,平面BB1D1D∩平面PMN=PQ, ∴BD1∥PQ, ∴DP:PD1=DQ:QB=3:1.
复制答案
考点分析:
相关试题推荐
如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分别为A1B,B1C1的中点.
(1)求证BC∥平面MNB1
(2)求证平面A1CB⊥平面ACC1A1

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)若PD与平面ABCD所成角为60°,且AD=2,AB=4,求点A到平面PED的距离.
查看答案
在长方体ABCD-A1B1C1D1中,AB=3,BC=AA1=4,点O是AC的中点.
(1)求证:AD1∥平面DOC1
(2)求异面直线AD1和DC1所成角的余弦值.

manfen5.com 满分网 查看答案
如图所示,正方体ABCD-A1B1C1D1,E,F分别是AD,AA1的中点.
(1)求直线EF和直线AB1所成的角的大小;
(2)求二面角D-A1C1-D1的正切值.

manfen5.com 满分网 查看答案
如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BCmanfen5.com 满分网manfen5.com 满分网,BEmanfen5.com 满分网manfen5.com 满分网,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.