满分5 > 高中数学试题 >

如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=6...

manfen5.com 满分网如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.
根据已知条件的特点,取BC的中点O,连接AO、SO,既可证明AO⊥平面BSC,又可证明SO⊥平面ABC,根据面面垂直的判定定理可得到结论. 证明:取BC的中点O,连接AO、SO. ∵AS=BS=CS,SO⊥BC, 又∵∠ASB=∠ASC=60°,∴AB=AC, 从而AO⊥BC. 设AS=a,又∠BSC=90°,则SO=a. 又AO===a, ∴AS2=AO2+SO2,故AO⊥OS. 从而AO⊥平面BSC,又AO⊂平面ABC, ∴平面ABC⊥平面BSC.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在正方体ABCD-A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:
(1)AP⊥MN;
(2)平面MNP∥平面A1BD.
查看答案
如图,已知BC是半径为1的半圆O的直径,A是半圆周上不同于B,C的点,F为manfen5.com 满分网的中点.梯形ACDE中,DE∥AC,且AC=2DE,平面ACDE⊥平面ABC.求证:
(1)平面ABE⊥平面ACDE;
(2)平面OFD∥平面BAE.

manfen5.com 满分网 查看答案
在正四棱柱ABCD-A1B1C1D1中,E为AD中点,F为B1C1中点.
(Ⅰ)求证:A1F∥平面ECC1
(Ⅱ)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示的多面体ABCDE中,已知AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,BC=manfen5.com 满分网,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求直线CE与平面ABED所成角的余弦值;
(3)求多面体ABCDE的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网在正方体ABCD-A1B1C1D1中,M,N分别是AB,BC的中点.
(1)求证:平面B1MN⊥平面BB1D1D;
(2)若在棱DD1上有一点P,使BD1∥平面PMN,求线段DP与PD1的比.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.