满分5 > 高中数学试题 >

已知四边形ABCD是等腰梯形,AB=3,DC=1,∠BAD=45°,DE⊥AB(...

manfen5.com 满分网已知四边形ABCD是等腰梯形,AB=3,DC=1,∠BAD=45°,DE⊥AB(如图1).现将△ADE沿DE折起,使得AE⊥EB(如图2),连接AC,AB,设M是AB的中点.
(1)求证:BC⊥平面AEC;
(2)判断直线EM是否平行于平面ACD,并说明理由.
(1)在图1中,过C作CF⊥EB,连接CE,证明BC⊥CE,在图2中,利用AE⊥EB,AE⊥ED,可证AE⊥平面BCDE,从而可得AE⊥BC,即可证明BC⊥平面AEC (2)用反证法.假设EM∥平面ACD,从而可证面AEB∥面AC,而A∈平面AEB,A∈平面ACD,与平面AEB∥平面ACD矛盾,故可得结论. (1)证明:在图1中,过C作CF⊥EB ∵DE⊥EB,∴四边形CDEF是矩形, ∵CD=1,∴EF=1. ∵四边形ABCD是等腰梯形,AB=3,∴AE=BF=1. ∵∠BAD=45°,∴DE=CF=1. 连接CE,则CE=CB=, ∵EB=2,∴∠BCE=90°, ∴BC⊥CE.                                                                                      在图2中,∵AE⊥EB,AE⊥ED,EB∩ED=E, ∴AE⊥平面BCDE. ∵BC⊂平面BCDE,∴AE⊥BC.                                                       ∵AE∩CE=E,∴BC⊥平面AEC.                                                      (2)【解析】 用反证法.假设EM∥平面ACD.                           ∵EB∥CD,CD平面ACD,EB平面ACD, ∴EB∥平面ACD.∵EB∩EM=E,∴面AEB∥面ACD                          而A∈平面AEB,A∈平面ACD,与平面AEB∥平面ACD矛盾. ∴假设不成立,∴EM与平面ACD不平行.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网某高速公路收费站入口处的安全标识墩如图(1)所示.墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积;
(3)证明:直线BD⊥平面PEG.
查看答案
如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)请画出该几何体的三视图;
(2)求四棱锥B-CEPD的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图是一几何体的直观图、主视图、俯视图、左视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)证明BD∥面PEC.
查看答案
如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S-CD-A的平面角为45°,M为AB中点,N为SC中点.
(1)证明:MN∥平面SAD;
(2)证明:平面SMC⊥平面SCD;
(3)若manfen5.com 满分网,求实数λ的值,使得直线SM与平面SCD所成角为30°.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图已知在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC=BC,M,N,P,Q分别是AA1,BB1,AB,B1C1的中点,
(1)求证:面PCC1⊥面MNQ;
(2)求证:PC1∥面MNQ.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.