如图,椭圆
=1(a>b>0)与一等轴双曲线相交,M是其中一个交点,并且双曲线的顶点是该椭圆的焦点F
1,F
2,双曲线的焦点是椭圆的顶点A
1,A
2,△MF
1F
2的周长为4(
+1).设P为该双曲线上异于顶点的任一点,直线PF
1和PF
2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF
1、PF
2的斜率分别为k
1、k
2,证明k
1•k
2=1;
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
查看答案