满分5 > 高中数学试题 >

在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=...

manfen5.com 满分网在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.
(1)求证:DE∥平面ABC;
(2)求二面角E-BC-A的余弦;
(3)求多面体ABCDE的体积.
(1)证明线面平行,需要证明直线平行面内的一条直线即可. (2)利用三垂线定理作出二面角的平面角即可求解. (3)求多面体ABCDE的体积,转化两个三棱锥的体积之和,分别求解. 【解析】 方法一:(1)由题意知,△ABC,△ACD都是边长为2的等边三角形, 取AC中点O,连接BO,DO, 则BO⊥AC,DO⊥AC∵平面ACD⊥平面ABC ∴DO⊥平面ABC,作EF⊥平面ABC, 那么EF∥DO,根据题意,点F落在BO上, ∴∠EBF=60°,易求得 所以四边形DEFO是平行四边形,DE∥OF;∵DE⊄平面ABC,OF⊂平面ABC,∴DE∥平面ABC (2)作FG⊥BC,垂足为G,连接FG; ∵EF⊥平面ABC,根据三垂线定理可知,EG⊥BC, ∴∠EGF就是二面角E-BC-A的平面角, ∵, ∴, ∴ 即二面角E-BC-A的余弦值为. (3)∵平面ACD⊥平面ABC,OB⊥AC∴OB⊥平面ACD; 又∵DE∥OB∴DE⊥平面DAC, ∴三棱锥E-DAC的体积, 又三棱锥E-ABC的体积, ∴多面体DE-ABC的体积为V=V1+V2=, 方法二:(1)同方法一 (2)建立如图所示的空间直角坐标系O-xyz, 可求得平面ABC的一个法向量为, 平面BCE的一个法向量为, 所以=, 又由图知,所求二面角的平面角是锐角, 所以二面角E-BC-A的余弦值为. (3)同方法一
复制答案
考点分析:
相关试题推荐
某超市为促销商品,特举办“购物有奖100%中奖”活动.凡消费者在该超市购物满10元,享受一次摇奖机会,购物满20元,享受两次摇奖机会,以此类推.摇奖机的结构如图所示,将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落、小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,落入A袋为一等奖,奖金为2元,落入B袋为二等奖,奖金为1元、已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是manfen5.com 满分网
(Ⅰ)求摇奖两次,均获得一等奖的概率;
(Ⅱ)某消费者购物满20元,摇奖后所得奖金为X元,试求X的分布列与期望;
(Ⅲ)若超市同时举行购物八八折让利于消费者活动(打折后不再享受摇奖),某消费者刚好消费20元,请问他是选择摇奖还是选择打折比较划算.

manfen5.com 满分网 查看答案
如图,山顶上有一塔,为了测量塔高,测量人员在山脚下A点处测得塔底C的仰角为60°,移动am后到达B点,又测得塔底C点的仰角为30°,测得塔尖D点的仰角为45°,求塔高CD.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网若数列{an}满a1=manfen5.com 满分网,an+1=f(an),n∈N*,则a2006+a2009+a2010=    查看答案
已知不等式组manfen5.com 满分网,表示的平面区域的面积为4,点P(x,y)在所给平面区域内,则z=2x+y的最大值为    查看答案
已知一几何体的三视图如图,则该几何体外接球的表面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.