满分5 > 高中数学试题 >

过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,若|AF|=3,则|BF...

过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,若|AF|=3,则|BF|=   
设∠AFx=θ,θ∈(0,π)及|BF|=m,利用抛物线的定义直接求出m即|BF|的值. 【解析】 设∠AFx=θ,θ∈(0,π)及|BF|=m, 则点A到准线l:x=-1的距离为3. 得3=2+3cosθ⇔cosθ=,又m=2+mcos(π-θ)⇔=. 故答案为:.
复制答案
考点分析:
相关试题推荐
对于任意的实数a(a≠0)和b,不等式|a+b|+|a-b|≥M•|a|恒成立,记实数M的最大值是m.
(1)求m的值;
(2)解不等式|x-1|+|x-2|≤m.
查看答案
manfen5.com 满分网选做题
如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:
(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE•GF.
查看答案
已知函数f(x)=lnx+x2-ax(a∈R).
(1)若f(x)在其定义域上为增函数,求a的取值范围;
(2)若f(x)存在极值,试求a的取值范围,并证明所有极值之和小于-3+lnmanfen5.com 满分网
(3)设an=1+manfen5.com 满分网(n∈N*),求证:3(a1+a2+…+an)-(a12+a22+…+an2)<ln(n+1)+2n.
查看答案
过定点A(1,0)的动圆M与定圆B:(x+1)2+y2=8内切(圆心为B).
(1)求动圆圆心M的轨迹方程;
(2)设点N(0,1),是否存在直线l交M的轨迹于P,Q两点,使得△NPQ的垂心恰为点A.若存在,求出该直线l的方程;若不存在,请说明理由.
查看答案
某班级举行一次知识竞赛,活动分为初赛和决赛,现将初赛成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分组(分数段)频数(人数)频率
(60,70)______0.16
(70,80)22______
(80,90)140.28
(90,100)____________
合计50______
(1)填充频率分布表中的空格(直接写出对应空格序号的答案,不必写过程);
(2)决赛规则如下:参加决赛的同学依次回答主持人的4道题,答对2道就终止答题,并获得一等奖;如果前三道题都答错,就不再回答第四题.某同学甲现已进入决赛(初赛80分以上,不含80分),每题答对的概率P的值恰好等于频率分布表中80分以上的频率值.
①求该同学答完3道题而获得一等奖的概率;
②记该同学决赛中答题的个数为ξ,求ξ的分布列.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.