满分5 > 高中数学试题 >

设函数. (Ⅰ) 讨论函数f(x)的单调性; (Ⅱ)若x≥0时,恒有f(x)≤a...

设函数manfen5.com 满分网
(Ⅰ) 讨论函数f(x)的单调性;
(Ⅱ)若x≥0时,恒有f(x)≤ax3,试求实数a的取值范围;
(Ⅲ)令manfen5.com 满分网,试证明:manfen5.com 满分网
(I)先求导数,再求出f'(x)>0时x的范围;并且求出f'(x)<0时x的范围;进而解决单调性问题. (II)令g(x)=f(x)-ax3=x-ln(x+)-ax3.则g′(x)=,令h(x)=,求其导数,下面对a进行分类讨论:(1)当a≥时,(2)当0<a<时,(3)当a≤0时,h′(x)>0,最后综合得出实数a的取值范围. (III)在(II)中取a=,则x∈[0,],时,x-ln(x+)>x3,即x3+ln(x+)<x,令x=()2n,利用等比数列求和公式即可证明结论. 【解析】 (I)函数的定义域为R, 由于f′(x)=1-≥0, 知f(x)是R上的增函数. (II)令g(x)=f(x)-ax3=x-ln(x+)-ax3. 则g′(x)=, 令h(x)=, 则h′(x)=, (1)当a≥时,h′(x)≤0,从而h(x)是[0,+∞)上的减函数,因h(0)=0,则x≥0时,h(x)≤0,也即g′(x)≤0,进而g(x)是[0,+∞)上的减函数, 注意g(0)=0,则x≥0时,g(x)≤0,也即f(x)≤ax3, (2)当0<a<时,在[0,],h′(x)>0,从而x∈[0,]时,也即f(x)>ax3, (3)当a≤0时,h′(x)>0,同理可知:f(x)>ax3, 综合,实数a的取值范围[,+∞). (III)在(II)中取a=,则x∈[0,],时,x-ln(x+)>x3,即x3+ln(x+)<x, 令x=()2n,则<()2n, ∴
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=1,a2=3,其前n项和为Sn,且当n≥2时,an+1Sn-1-anSn=0.
(Ⅰ)求证:数列{Sn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)令manfen5.com 满分网,记数列{bn}的前n项和为Tn,证明对于任意的正整数n,都有manfen5.com 满分网成立.
查看答案
如图,已知直线L:x=my+1过椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的右焦点F,且交椭圆C于A、B两点,点A、F、B在直线G;x=a2上的射影依次为点D、K、E,若抛物线x2=4manfen5.com 满分网y的焦点为椭圆C的顶点.
(1)求椭圆C的方程;
(2)若直线L交y轴于点M,manfen5.com 满分网1manfen5.com 满分网manfen5.com 满分网2manfen5.com 满分网,当M变化时,求λ12的值.

manfen5.com 满分网 查看答案
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P
产品\概率\工序第一工序第二工序
0.80.85
0.750.8
(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;
产品\利润\等级一等二等
5(万元)2.5(万元)
2.5(万元)1.5(万元)
(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
产品\用量\项目工人(名)资金(万元)
85
210

查看答案
△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(manfen5.com 满分网-1)c.
(1)求角A的大小;
(2)已知当x∈[manfen5.com 满分网manfen5.com 满分网]时,函数f(x)=cos2x+asinx的最大值为3,求△ABC的面积.
查看答案
如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为棱BB1的中点.
(1)求平面A1DM与平面ABCD所成的锐二面角的大小;
(2)求点B到平面A1DM的距离.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.