满分5 > 高中数学试题 >

已知点是离心率为的椭圆C:上的一点.斜率为的直线BD交椭圆C于B、D两点,且A、...

已知点manfen5.com 满分网是离心率为manfen5.com 满分网的椭圆C:manfen5.com 满分网上的一点.斜率为manfen5.com 满分网的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线AB、AD的斜率之和为定值.
(Ⅰ)由,,能导出椭圆C的方程. (Ⅱ)设直线BD的方程为,,△=-8b2+64>0,设d为点A到直线BD:的距离,由,故,由此知当b=±2时,△ABD的面积最大,最大值为. (Ⅲ)设D(x1,y1),B(x2,y2),直线AB、AD的斜率分别为:kAB、kAD,则kAD+kAB==,由此能导出即kAD+kAB=0. 【解析】 (Ⅰ)∵,,a2=b2+c2 ∴a=2,,∴(5分) (Ⅱ)设直线BD的方程为∴∴△=-8b2+64>0,①②∵, 设d为点A到直线BD:的距离,∴∴, 当且仅当b=±2时取等号. 因为±2,所以当b=±2时,△ABD的面积最大,最大值为(10分) (Ⅲ)设D(x1,y1),B(x2,y2), 直线AB、AD的斜率分别为:kAB、kAD, 则kAD+kAB==* 将(Ⅱ)中①、②式代入*式整理得=0, 即kAD+kAB=0(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(-1,0),P为椭圆G的上顶点,且∠PF1O=45°.
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.
查看答案
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
查看答案
以抛物线y2=4x上的点(x,4)为圆心,并过此抛物线焦点的圆的方程是    查看答案
过双曲线manfen5.com 满分网的右焦点,且平行于经过一、三象限的渐近线的直线方程是    查看答案
过双曲线manfen5.com 满分网=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x2+y2=manfen5.com 满分网的切线,切点为E,延长FE交双曲线右支于点P,若manfen5.com 满分网,则双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.