满分5 > 高中数学试题 >

在平面直角坐标系xOy中,已知椭圆C:的离心率,且椭圆C上的点到点Q(0,2)的...

在平面直角坐标系xOy中,已知椭圆C:manfen5.com 满分网的离心率manfen5.com 满分网,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
(1)由得a2=3b2,椭圆方程为x2+3y2=3b2,求出椭圆上的点到点Q的距离,利用配方法,确定函数的最大值,即可求得椭圆方程; (2)假设M(m,n)存在,则有m2+n2>1,求出|AB|,点O到直线l距离,表示出面积,利用基本不等式,即可确定三角形面积的最大值,从而可求点M的坐标. 【解析】 (1)由得a2=3b2,椭圆方程为x2+3y2=3b2 椭圆上的点到点Q的距离= ①当-b≤-1时,即b≥1,得b=1 ②当-b>-1时,即b<1,得b=1(舍) ∴b=1 ∴椭圆方程为 (2)假设M(m,n)存在,则有m2+n2>1 ∵|AB|=,点O到直线l距离 ∴= ∵m2+n2>1 ∴0<<1,∴ 当且仅当,即m2+n2=2>1时,S△AOB取最大值, 又∵ 解得: 所以点M的坐标为或或或,△AOB的面积为.
复制答案
考点分析:
相关试题推荐
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),若manfen5.com 满分网=0且椭圆的离心率e=manfen5.com 满分网,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
已知点manfen5.com 满分网是离心率为manfen5.com 满分网的椭圆C:manfen5.com 满分网上的一点.斜率为manfen5.com 满分网的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线AB、AD的斜率之和为定值.
查看答案
manfen5.com 满分网在平面直角坐标系xOy中,椭圆G的中心为坐标原点,左焦点为F1(-1,0),P为椭圆G的上顶点,且∠PF1O=45°.
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)已知直线l1:y=kx+m1与椭圆G交于A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.(ⅰ)证明:m1+m2=0;(ⅱ)求四边形ABCD的面积S的最大值.
查看答案
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.
查看答案
以抛物线y2=4x上的点(x,4)为圆心,并过此抛物线焦点的圆的方程是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.